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Problem I-1.
We are given a table 2× 2 with a positive integer written in each cell. If we add
up the product of numbers in the first column, the product of numbers in the
second column, the product of numbers in the first row, and the product of
numbers in the second row, we will get 2021.

a) Determine the possible values of the sum of the four numbers in the table.

b) Find the number of tables satisfying the statement in which four entries are
pairwise different.
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Official solution

a) Denote numbers in the table by a, b, c , d , as shown in the picture.
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a) Denote numbers in the table by a, b, c , d , as shown in the picture.
The problem condition can be equivalently written as

ab + cd + ac + bd = 2021
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Official solution

a) Denote numbers in the table by a, b, c , d , as shown in the picture.
The problem condition can be equivalently written as

ab + cd + ac + bd = 2021, i.e. (a+ d)(b + c) = 43 · 47.
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Official solution

a) Denote numbers in the table by a, b, c , d , as shown in the picture.
The problem condition can be equivalently written as

ab + cd + ac + bd = 2021, i.e. (a+ d)(b + c) = 43 · 47.

As a+ d ­ 2 and b + c ­ 2, this means that {a+ d , b + c} = {43, 47} and in
consequence a+ b + c + d = 90.
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Official solution

a) Denote numbers in the table by a, b, c , d , as shown in the picture.
The problem condition can be equivalently written as

ab + cd + ac + bd = 2021, i.e. (a+ d)(b + c) = 43 · 47.

As a+ d ­ 2 and b + c ­ 2, this means that {a+ d , b + c} = {43, 47} and in
consequence a+ b + c + d = 90.

b) If a+ d = 43 and b + c = 47, then the pair (a, d) can be chosen in 42 ways,
and the pair (b, c) — in 46 ways.
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a) Denote numbers in the table by a, b, c , d , as shown in the picture.
The problem condition can be equivalently written as

ab + cd + ac + bd = 2021, i.e. (a+ d)(b + c) = 43 · 47.

As a+ d ­ 2 and b + c ­ 2, this means that {a+ d , b + c} = {43, 47} and in
consequence a+ b + c + d = 90.

b) If a+ d = 43 and b + c = 47, then the pair (a, d) can be chosen in 42 ways,
and the pair (b, c) — in 46 ways. We get the same numbers in the symmetric
case where a+ d = 47 and b + c = 43.
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a) Denote numbers in the table by a, b, c , d , as shown in the picture.
The problem condition can be equivalently written as

ab + cd + ac + bd = 2021, i.e. (a+ d)(b + c) = 43 · 47.

As a+ d ­ 2 and b + c ­ 2, this means that {a+ d , b + c} = {43, 47} and in
consequence a+ b + c + d = 90.

b) If a+ d = 43 and b + c = 47, then the pair (a, d) can be chosen in 42 ways,
and the pair (b, c) — in 46 ways. We get the same numbers in the symmetric
case where a+ d = 47 and b + c = 43. In total this is 2 · 42 · 46 different tables
including the ones where some numbers are equal.
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a) Denote numbers in the table by a, b, c , d , as shown in the picture.
The problem condition can be equivalently written as

ab + cd + ac + bd = 2021, i.e. (a+ d)(b + c) = 43 · 47.

As a+ d ­ 2 and b + c ­ 2, this means that {a+ d , b + c} = {43, 47} and in
consequence a+ b + c + d = 90.

b) If a+ d = 43 and b + c = 47, then the pair (a, d) can be chosen in 42 ways,
and the pair (b, c) — in 46 ways. We get the same numbers in the symmetric
case where a+ d = 47 and b + c = 43. In total this is 2 · 42 · 46 different tables
including the ones where some numbers are equal.

In order to give the final answer, we need to subtract the number of tables where
some not all numbers are equal. Consider any such table.
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a) Denote numbers in the table by a, b, c , d , as shown in the picture.
The problem condition can be equivalently written as

ab + cd + ac + bd = 2021, i.e. (a+ d)(b + c) = 43 · 47.

As a+ d ­ 2 and b + c ­ 2, this means that {a+ d , b + c} = {43, 47} and in
consequence a+ b + c + d = 90.

b) If a+ d = 43 and b + c = 47, then the pair (a, d) can be chosen in 42 ways,
and the pair (b, c) — in 46 ways. We get the same numbers in the symmetric
case where a+ d = 47 and b + c = 43. In total this is 2 · 42 · 46 different tables
including the ones where some numbers are equal.

In order to give the final answer, we need to subtract the number of tables where
some not all numbers are equal. Consider any such table. As 43 and 47 are odd,
we have a 6= c and b 6= d . Moreover a+ d 6= b + c , so exactly one of the
equalities a = b, a = c , d = b, d = c holds.
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a) Denote numbers in the table by a, b, c , d , as shown in the picture.
The problem condition can be equivalently written as

ab + cd + ac + bd = 2021, i.e. (a+ d)(b + c) = 43 · 47.

As a+ d ­ 2 and b + c ­ 2, this means that {a+ d , b + c} = {43, 47} and in
consequence a+ b + c + d = 90.

b) If a+ d = 43 and b + c = 47, then the pair (a, d) can be chosen in 42 ways,
and the pair (b, c) — in 46 ways. We get the same numbers in the symmetric
case where a+ d = 47 and b + c = 43. In total this is 2 · 42 · 46 different tables
including the ones where some numbers are equal.

In order to give the final answer, we need to subtract the number of tables where
some not all numbers are equal. Consider any such table. As 43 and 47 are odd,
we have a 6= c and b 6= d . Moreover a+ d 6= b + c , so exactly one of the
equalities a = b, a = c , d = b, d = c holds. For each of these equalities we have
42 corresponding tables, which gives a total of 4 · 42 tables (for each of the two
cases).
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a) Denote numbers in the table by a, b, c , d , as shown in the picture.
The problem condition can be equivalently written as

ab + cd + ac + bd = 2021, i.e. (a+ d)(b + c) = 43 · 47.

As a+ d ­ 2 and b + c ­ 2, this means that {a+ d , b + c} = {43, 47} and in
consequence a+ b + c + d = 90.

b) If a+ d = 43 and b + c = 47, then the pair (a, d) can be chosen in 42 ways,
and the pair (b, c) — in 46 ways. We get the same numbers in the symmetric
case where a+ d = 47 and b + c = 43. In total this is 2 · 42 · 46 different tables
including the ones where some numbers are equal.

In order to give the final answer, we need to subtract the number of tables where
some not all numbers are equal. Consider any such table. As 43 and 47 are odd,
we have a 6= c and b 6= d . Moreover a+ d 6= b + c , so exactly one of the
equalities a = b, a = c , d = b, d = c holds. For each of these equalities we have
42 corresponding tables, which gives a total of 4 · 42 tables (for each of the two
cases).

Ultimately, the answer is 2 · 42 · 46− 8 · 42 = 3528.
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Problem I-2.
Let ABC be an acute triangle. Denote by D and E the projections of B and C ,
respectively, on the external angle bisector of ∠BAC . Let F be the intersection
point of BE and CD. Prove that AF ⊥ DE .
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As ∠BAD = ∠CAE , right triangles ABD and ACE
are similar and

AD

AE
=

BD

CE
.
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As ∠BAD = ∠CAE , right triangles ABD and ACE
are similar and

AD

AE
=

BD

CE
.

Moreover BD ‖ CE , so

BD

CE
=

FD

FC
.
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Official solution

As ∠BAD = ∠CAE , right triangles ABD and ACE
are similar and

AD

AE
=

BD

CE
.

Moreover BD ‖ CE , so

BD

CE
=

FD

FC
.

Combining the two equalities, we get that
AF ‖ CE , so AF ⊥ DE .
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Problem I-3.
The cross is a figure consisting of 6 unit squares presented in the picture below
(and any other figure obtained from it by rotation).

Determine the largest number of crosses that can be cut from a 6× 11 piece of
paper divided into unit squares (each cross should consist of six such squares).
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Let us cover boundary cells with 15 dominoes, as shown in the picture.
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Let us cover boundary cells with 15 dominoes, as shown in the picture. In each
such domino there is at most one cell belonging to some cross.
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Let us cover boundary cells with 15 dominoes, as shown in the picture. In each
such domino there is at most one cell belonging to some cross. Therefore, all
crosses can together contain at most 6 · 11− 15 = 51 cells, which means that
there are at most 8 crosses.
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Let us cover boundary cells with 15 dominoes, as shown in the left picture. In
each such domino there is at most one cell belonging to some cross. Therefore, all
crosses can together contain at most 6 · 11− 15 = 51 cells, which means that
there are at most 8 crosses. Eight is actually possible (see the right picture).
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Let us cover boundary cells with 15 dominoes, as shown in the left picture. In
each such domino there is at most one cell belonging to some cross. Therefore, all
crosses can together contain at most 6 · 11− 15 = 51 cells, which means that
there are at most 8 crosses. Eight is actually possible (see the right picture).
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Problem I-4.
Determine the smallest value that an expression

x4 + y4 − x2y − xy2

attains, where x and y are positive real numbers satisfying x + y ¬ 1.
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Note that
x4 + y4 − x2y − xy2
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Note that
x4 + y4−x2y − xy2

9th Czech-Polish-Slovak Junior Mathematical Competition



Official solution

Note that

x4 + y4−x2y − xy2 =
(
x2 − y2

)2
+ 2x2y2−xy(x + y)
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Note that

x4 + y4 − x2y − xy2 =
(
x2 − y2

)2
+ 2x2y2 − xy(x + y) ­
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Note that

x4 + y4 − x2y − xy2 =
(
x2 − y2

)2
+ 2x2y2 − xy(x + y) ­

­
(
x2 − y2

)2
+ 2
(
x2y2 − 12xy

)
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Note that

x4 + y4 − x2y − xy2 =
(
x2 − y2

)2
+ 2x2y2 − xy(x + y) ­

­
(
x2 − y2

)2
+ 2
(
xy − 1

4

)2
− 1

8
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Note that

x4 + y4 − x2y − xy2 =
(
x2 − y2

)2
+ 2x2y2 − xy(x + y) ­

­
(
x2 − y2

)2
+ 2
(
xy − 1

4

)2
− 1

8
­ −1

8
,

If x = y = 1
2 then − 18 is achieved.
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Problem I-5.
Let ABCDEFG be a regular 7-gon. Lines AB and CE intersect at P. Find
|∠PDG |.
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Denote by Q the intersection point of segments DG and CE .
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Denote by Q the intersection point of segments DG and CE .
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Denote by Q the intersection point of segments DG and CE .
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As the 7-gon is regular, we have AB ‖ CG , AC ‖ DG and AG ‖ CE .
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Denote by Q the intersection point of segments DG and CE .

A B

C

D

E

F
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As the 7-gon is regular, we have AB ‖ CG , AC ‖ DG and AG ‖ CE . Therefore,
APCG and ACQG are parallelograms hence CP = CQ = AG = CD.
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Denote by Q the intersection point of segments DG and CE .

A B

C

D

E

F

G

Q

P

As the 7-gon is regular, we have AB ‖ CG , AC ‖ DG and AG ‖ CE . Therefore,
APCG and ACQG are parallelograms hence CP = CQ = AG = CD. This means
that triangle DPQ is right and ∠PDG = 90◦.
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