

9th Czech-Polish-Slovak Junior Mathematical Competition

18.06.2021 - Individual Contest Solutions

Problem l-1.

We are given a table 2×2 with a positive integer written in each cell. If we add up the product of numbers in the first column, the product of numbers in the second column, the product of numbers in the first row, and the product of numbers in the second row, we will get 2021.
a) Determine the possible values of the sum of the four numbers in the table.
b) Find the number of tables satisfying the statement in which four entries are pairwise different.

Official solution

a) Denote numbers in the table by a, b, c, d, as shown in the picture.

a	c
b	d

Official solution

a) Denote numbers in the table by a, b, c, d, as shown in the picture. The problem condition can be equivalently written as

$$
a b+c d+a c+b d=2021
$$

a	c
b	d

Official solution

a) Denote numbers in the table by a, b, c, d, as shown in the picture. The problem condition can be equivalently written as

$$
a b+c d+a c+b d=2021, \quad \text { i.e. } \quad(a+d)(b+c)=43 \cdot 47
$$

a	c
b	d

Official solution

a) Denote numbers in the table by a, b, c, d, as shown in the picture. The problem condition can be equivalently written as

$$
a b+c d+a c+b d=2021, \quad \text { i.e. } \quad(a+d)(b+c)=43 \cdot 47 .
$$

As $a+d \geqslant 2$ and $b+c \geqslant 2$, this means that $\{a+d, b+c\}=\{43,47\}$ and in consequence $a+b+c+d=90$.

Official solution

a) Denote numbers in the table by a, b, c, d, as shown in the picture. The problem condition can be equivalently written as

$$
a b+c d+a c+b d=2021, \quad \text { i.e. } \quad(a+d)(b+c)=43 \cdot 47
$$

a	c
b	d

As $a+d \geqslant 2$ and $b+c \geqslant 2$, this means that $\{a+d, b+c\}=\{43,47\}$ and in consequence $a+b+c+d=90$.
b) If $a+d=43$ and $b+c=47$, then the pair (a, d) can be chosen in 42 ways, and the pair (b, c) - in 46 ways.

Official solution

a) Denote numbers in the table by a, b, c, d, as shown in the picture. The problem condition can be equivalently written as

$$
a b+c d+a c+b d=2021, \quad \text { i.e. } \quad(a+d)(b+c)=43 \cdot 47
$$

a	c
b	d

As $a+d \geqslant 2$ and $b+c \geqslant 2$, this means that $\{a+d, b+c\}=\{43,47\}$ and in consequence $a+b+c+d=90$.
b) If $a+d=43$ and $b+c=47$, then the pair (a, d) can be chosen in 42 ways, and the pair (b, c) - in 46 ways. We get the same numbers in the symmetric case where $a+d=47$ and $b+c=43$.

Official solution

a) Denote numbers in the table by a, b, c, d, as shown in the picture. The problem condition can be equivalently written as

$$
a b+c d+a c+b d=2021, \quad \text { i.e. } \quad(a+d)(b+c)=43 \cdot 47 .
$$

a	c
b	d

As $a+d \geqslant 2$ and $b+c \geqslant 2$, this means that $\{a+d, b+c\}=\{43,47\}$ and in consequence $a+b+c+d=90$.
b) If $a+d=43$ and $b+c=47$, then the pair (a, d) can be chosen in 42 ways, and the pair (b, c) - in 46 ways. We get the same numbers in the symmetric case where $a+d=47$ and $b+c=43$. In total this is $2 \cdot 42 \cdot 46$ different tables including the ones where some numbers are equal.

Official solution

a) Denote numbers in the table by a, b, c, d, as shown in the picture. The problem condition can be equivalently written as

$$
a b+c d+a c+b d=2021, \quad \text { i.e. } \quad(a+d)(b+c)=43 \cdot 47
$$

a	c
b	d

As $a+d \geqslant 2$ and $b+c \geqslant 2$, this means that $\{a+d, b+c\}=\{43,47\}$ and in consequence $a+b+c+d=90$.
b) If $a+d=43$ and $b+c=47$, then the pair (a, d) can be chosen in 42 ways, and the pair (b, c) - in 46 ways. We get the same numbers in the symmetric case where $a+d=47$ and $b+c=43$. In total this is $2 \cdot 42.46$ different tables including the ones where some numbers are equal.
In order to give the final answer, we need to subtract the number of tables where some not all numbers are equal. Consider any such table.

Official solution

a) Denote numbers in the table by a, b, c, d, as shown in the picture. The problem condition can be equivalently written as

$$
a b+c d+a c+b d=2021, \quad \text { i.e. } \quad(a+d)(b+c)=43 \cdot 47
$$

a	c
b	d

As $a+d \geqslant 2$ and $b+c \geqslant 2$, this means that $\{a+d, b+c\}=\{43,47\}$ and in consequence $a+b+c+d=90$.
b) If $a+d=43$ and $b+c=47$, then the pair (a, d) can be chosen in 42 ways, and the pair (b, c) - in 46 ways. We get the same numbers in the symmetric case where $a+d=47$ and $b+c=43$. In total this is 2.42 .46 different tables including the ones where some numbers are equal.
In order to give the final answer, we need to subtract the number of tables where some not all numbers are equal. Consider any such table. As 43 and 47 are odd, we have $a \neq c$ and $b \neq d$. Moreover $a+d \neq b+c$, so exactly one of the equalities $a=b, a=c, d=b, d=c$ holds.

Official solution

a) Denote numbers in the table by a, b, c, d, as shown in the picture. The problem condition can be equivalently written as

$$
a b+c d+a c+b d=2021, \quad \text { i.e. } \quad(a+d)(b+c)=43 \cdot 47
$$

a	c
b	d

As $a+d \geqslant 2$ and $b+c \geqslant 2$, this means that $\{a+d, b+c\}=\{43,47\}$ and in consequence $a+b+c+d=90$.
b) If $a+d=43$ and $b+c=47$, then the pair (a, d) can be chosen in 42 ways, and the pair (b, c) - in 46 ways. We get the same numbers in the symmetric case where $a+d=47$ and $b+c=43$. In total this is 2.42 .46 different tables including the ones where some numbers are equal.
In order to give the final answer, we need to subtract the number of tables where some not all numbers are equal. Consider any such table. As 43 and 47 are odd, we have $a \neq c$ and $b \neq d$. Moreover $a+d \neq b+c$, so exactly one of the equalities $a=b, a=c, d=b, d=c$ holds. For each of these equalities we have 42 corresponding tables, which gives a total of 4.42 tables (for each of the two cases).

Official solution

a) Denote numbers in the table by a, b, c, d, as shown in the picture. The problem condition can be equivalently written as

$$
a b+c d+a c+b d=2021, \quad \text { i.e. } \quad(a+d)(b+c)=43 \cdot 47
$$

a	c
b	d

As $a+d \geqslant 2$ and $b+c \geqslant 2$, this means that $\{a+d, b+c\}=\{43,47\}$ and in consequence $a+b+c+d=90$.
b) If $a+d=43$ and $b+c=47$, then the pair (a, d) can be chosen in 42 ways, and the pair (b, c) - in 46 ways. We get the same numbers in the symmetric case where $a+d=47$ and $b+c=43$. In total this is $2 \cdot 42.46$ different tables including the ones where some numbers are equal.
In order to give the final answer, we need to subtract the number of tables where some not all numbers are equal. Consider any such table. As 43 and 47 are odd, we have $a \neq c$ and $b \neq d$. Moreover $a+d \neq b+c$, so exactly one of the equalities $a=b, a=c, d=b, d=c$ holds. For each of these equalities we have 42 corresponding tables, which gives a total of 4.42 tables (for each of the two cases).
Ultimately, the answer is $2 \cdot 42 \cdot 46-8 \cdot 42=3528$.

Problem l-2.

Let $A B C$ be an acute triangle. Denote by D and E the projections of B and C, respectively, on the external angle bisector of $\angle B A C$. Let F be the intersection point of $B E$ and $C D$. Prove that $A F \perp D E$.

Official solution

Official solution

As $\angle B A D=\angle C A E$, right triangles $A B D$ and $A C E$ are similar and

$$
\frac{A D}{A E}=\frac{B D}{C E} .
$$

Official solution

As $\angle B A D=\angle C A E$, right triangles $A B D$ and $A C E$ are similar and

$$
\frac{A D}{A E}=\frac{B D}{C E} .
$$

Moreover $B D \| C E$, so

$$
\frac{B D}{C E}=\frac{F D}{F C} .
$$

Official solution

As $\angle B A D=\angle C A E$, right triangles $A B D$ and $A C E$ are similar and

$$
\frac{A D}{A E}=\frac{B D}{C E} .
$$

Moreover $B D \| C E$, so

$$
\frac{B D}{C E}=\frac{F D}{F C} .
$$

Combining the two equalities, we get that $A F \| C E$, so $A F \perp D E$.

Problem l-3.

The cross is a figure consisting of 6 unit squares presented in the picture below (and any other figure obtained from it by rotation).

Determine the largest number of crosses that can be cut from a 6×11 piece of paper divided into unit squares (each cross should consist of six such squares).

Official solution

Official solution

Let us cover boundary cells with 15 dominoes, as shown in the picture.

Official solution

Let us cover boundary cells with 15 dominoes, as shown in the picture.

Official solution

Let us cover boundary cells with 15 dominoes, as shown in the picture. In each such domino there is at most one cell belonging to some cross.

Official solution

Let us cover boundary cells with 15 dominoes, as shown in the picture. In each such domino there is at most one cell belonging to some cross. Therefore, all crosses can together contain at most $6 \cdot 11-15=51$ cells, which means that there are at most 8 crosses.

Official solution

Let us cover boundary cells with 15 dominoes, as shown in the left picture. In each such domino there is at most one cell belonging to some cross. Therefore, all crosses can together contain at most $6 \cdot 11-15=51$ cells, which means that there are at most 8 crosses. Eight is actually possible (see the right picture).

Official solution

Let us cover boundary cells with 15 dominoes, as shown in the left picture. In each such domino there is at most one cell belonging to some cross. Therefore, all crosses can together contain at most $6 \cdot 11-15=51$ cells, which means that there are at most 8 crosses. Eight is actually possible (see the right picture).

Problem I-4.

Determine the smallest value that an expression

$$
x^{4}+y^{4}-x^{2} y-x y^{2}
$$

attains, where x and y are positive real numbers satisfying $x+y \leqslant 1$.

Official solution

Note that

$$
x^{4}+y^{4}-x^{2} y-x y^{2}
$$

Official solution

Note that

$$
x^{4}+y^{4}-x^{2} y-x y^{2}
$$

Official solution

Note that

$$
x^{4}+y^{4}-x^{2} y-x y^{2}=\left(x^{2}-y^{2}\right)^{2}+2 x^{2} y^{2}-x y(x+y)
$$

Official solution

Note that

$$
x^{4}+y^{4}-x^{2} y-x y^{2}=\left(x^{2}-y^{2}\right)^{2}+2 x^{2} y^{2}-x y(x+y)
$$

Official solution

Note that

$$
x^{4}+y^{4}-x^{2} y-x y^{2}=\left(x^{2}-y^{2}\right)^{2}+2 x^{2} y^{2}-x y(x+y) \geqslant
$$

Official solution

Note that

$$
\begin{gathered}
x^{4}+y^{4}-x^{2} y-x y^{2}=\left(x^{2}-y^{2}\right)^{2}+2 x^{2} y^{2}-x y(x+y) \geqslant \\
\geqslant\left(x^{2}-y^{2}\right)^{2}+2\left(x^{2} y^{2}-\frac{1}{2} x y\right)
\end{gathered}
$$

Official solution

Note that

$$
\begin{gathered}
x^{4}+y^{4}-x^{2} y-x y^{2}=\left(x^{2}-y^{2}\right)^{2}+2 x^{2} y^{2}-x y(x+y) \geqslant \\
\geqslant\left(x^{2}-y^{2}\right)^{2}+2\left(x y-\frac{1}{4}\right)^{2}-\frac{1}{8}
\end{gathered}
$$

Official solution

Note that

$$
\begin{gathered}
x^{4}+y^{4}-x^{2} y-x y^{2}=\left(x^{2}-y^{2}\right)^{2}+2 x^{2} y^{2}-x y(x+y) \geqslant \\
\geqslant\left(x^{2}-y^{2}\right)^{2}+2\left(x y-\frac{1}{4}\right)^{2}-\frac{1}{8} \geqslant-\frac{1}{8}
\end{gathered}
$$

Official solution

Note that

$$
\begin{gathered}
x^{4}+y^{4}-x^{2} y-x y^{2}=\left(x^{2}-y^{2}\right)^{2}+2 x^{2} y^{2}-x y(x+y) \geqslant \\
\geqslant\left(x^{2}-y^{2}\right)^{2}+2\left(x y-\frac{1}{4}\right)^{2}-\frac{1}{8} \geqslant-\frac{1}{8}
\end{gathered}
$$

If $x=y=\frac{1}{2}$ then $-\frac{1}{8}$ is achieved.

Problem I-5.

Let $A B C D E F G$ be a regular 7 -gon. Lines $A B$ and $C E$ intersect at P. Find $|\angle P D G|$.

Official solution

Official solution

Denote by Q the intersection point of segments $D G$ and $C E$.

Official solution

Denote by Q the intersection point of segments $D G$ and $C E$.

Official solution

Denote by Q the intersection point of segments $D G$ and $C E$.

As the 7 -gon is regular, we have $A B\|C G, A C\| D G$ and $A G \| C E$.

Official solution

Denote by Q the intersection point of segments $D G$ and $C E$.

As the 7-gon is regular, we have $A B\|C G, A C\| D G$ and $A G \| C E$. Therefore, $A P C G$ and $A C Q G$ are parallelograms hence $C P=C Q=A G=C D$.

Official solution

Denote by Q the intersection point of segments $D G$ and $C E$.

As the 7-gon is regular, we have $A B\|C G, A C\| D G$ and $A G \| C E$. Therefore, $A P C G$ and $A C Q G$ are parallelograms hence $C P=C Q=A G=C D$. This means that triangle $D P Q$ is right and $\angle P D G=90^{\circ}$.

