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MEMO 2016 Individual Competition I-1
I-1 A
Let n ě 2 be an integer and x1, x2, . . . , xn be real numbers satisfying

(a) xj ą ´1 for j “ 1, 2, . . . , n and

(b) x1 ` x2 ` ¨ ¨ ¨ ` xn “ n.

Prove the inequality
n
ÿ

j“1

1
1` xj

ě

n
ÿ

j“1

xj
1` x2

j

and determine when equality holds.

Solution. We have to prove

n
ÿ

j“1

1
1` xj

´

n
ÿ

j“1

xj
1` x2

j

“

n
ÿ

j“1

1´ xj
p1` xjqp1` x2

jq
ě 0.

We use the supporting line method and consider the function f defined by

fpxq “
1´ x

p1` xqp1` x2q

for all x ą ´1. The tangent line of f at x “ 1 is given by y “ 1´x
4 . We claim that

fpxq “
1´ x

p1` xqp1` x2q
ě

1´ x
4

for all x ą ´1 with equality for x “ 1. For x ě 1 we get 4 ď p1`xqp1`x2q and for ´1 ă x ď 1
we get 4 ě p1` xqp1` x2q. Both inequalities are obviously true.

Now we conclude that
n
ÿ

j“1

1´ xj
p1` xjqp1` x2

jq
ě

n
ÿ

j“1

1´ xj
4 “ 0,

and we are done.

Equality occurs if and only if all n numbers are equal to 1.

Solution. Since 1` xj ą 0 for j “ 1, 2, . . . , n, Cauchy-Schwarz inequality yields

n
ÿ

j“1

1
1` xj

¨

n
ÿ

j“1
p1` xjq ě

˜

n
ÿ

j“1
1
¸2

,

4



MEMO 2016 Individual Competition I-1
which is equivalent to

n
ÿ

j“1

1
1` xj

ě
n

2 .

It therefore suffices to prove that
n
ÿ

j“1

xj
1` x2

j

ď
n

2 ,

but this last inequality is equivalent to the trivial one

n
ÿ

j“1

p1´ xjq2
1` x2

j

ě 0 ,

so the inequation is proven.

In the last equation, we have equality if and only if xj “ 1 for j “ 1, 2, . . . , n, and one can
easily see that this is indeed a case of equality, so it is the only case of equality.

Solution The inequality is equivalent to

n
ÿ

i“1

1´ xi
p1` xiqp1` x2

i q
ě 0

As the functions fpxq “ 1´ x and gpxq “ 1
p1`xqp1`x2q

are both strictly decreasing, we can apply
the Chebychev inequality to obtain:

n ¨
n
ÿ

i“1

1´ xi
p1` xiqp1` x2

i q
ě

˜

n
ÿ

i“1
1´ xi

¸˜

n
ÿ

i“1

1
p1` xiqp1` x2

i q

¸

“ 0

So we’re done.

Solution (via Lagrange multipliers) Let us write fpxq “ 1
1` x ´

x

1` x2 . We want to show
that the expression fpx1q ` . . .` fpxnq in the domain

D : x1, . . . , xn ą ´1, x1 ` . . .` xn “ n

attains its minimal value 0 exactly at the point x1 “ . . . “ xn “ 1.

We first consider the boundary of D. This means that w. l. o. g. we may assume that x1 “ ´1,
in which case the expression attains the value `8, which is not the minimum.

We now look for minima in the interior of the domain: The method of Lagrange multipliers
gives the Langrange function

F px1, . . . , xn, λq “
n
ÿ

j“1
pfpxjq ´ λpxj ´ 1qq

5



MEMO 2016 Individual Competition I-1
and results in the system of equations

f 1pxjq “ λ, j “ 1, . . . , n,
n
ÿ

j“1
xj “ n.

Now note that

• f 1pxq “
´1

p1` xq2 `
x2 ´ 1
p1` x2q2

“
2px3 ´ x2 ´ x´ 1q
p1` xq2p1` x2q2

.

• f 1pxq ă 0 for ´1 ă x ď 1. This is obvious from the first expression for f 1pxq.

• f 1pxq ą 0 for x ą 2. This can be seen from the second expression for f 1pxq, since for

x ą 2 we have 1` x` x2 ă
x3

8 `
x3

4 `
x3

2 ă x3.

• f2pxq “
2xp3´ x2q

p1` x2q3
`

2
p1` xq3 .

• f2pxq ą 0 for ´1 ă x ă 2 can be shown by considering the following three cases:

– For ´1 ă x ă 0, we have

1
p1` xq3 “

1
p1` xqp1` 2x` x2q

ą
1

p1` xqp1` x2q
.

Thus we get

f2pxq ą
2xp3´ x2q

p1` x2q3
`

2
p1` xqp1` x2q

“
2xp3´ x2qp1` xq ` 2p1` x2q2

p1` xqp1` x2q3
“

“
p6x` 6x2 ´ 2x3 ´ 2x4q ` p2` 4x2 ` 2x4q

p1` xqp1` x2q3
“

2` 6x` 10x2 ´ 2x3

p1` xqp1` x2q3
“

“

1
2p2` 3xq2 ` 11

2 x
2 ´ 2x3

p1` xqp1` x2q3
ą 0.

– For 0 ď x ď
?

3, the assertion is obvious.

– For
?

3 ă x ă 2, the assertion follows from

2
p1` xq3 ą

2
27 ,

2xp3´ x2q

p1` x2q3
“ ´

2xpx2 ´ 3q
p1` x2q3

ą ´
2 ¨ 2p22 ´ 3q
p1`

?
32
q3
“ ´

1
16 ą ´

2
27 .

• Hence f 1 is strictly increasing for ´1 ă x ď 2.

Since x “ 1
n

řn
j“1 xj “ 1, we know that xj ď 1 for some j. Therefore λ ă 0. This means xj ď 2

for every j “ 1, . . . , n. From the monotonicity of f 1 in the domain ´1 ă x ď 2, we now conclude
x1 “ . . . “ xn. In view of the condition x1 ` . . .` xn “ n this means x1 “ . . . “ xn “ 1. Since
fp1q “ 0, we are done.

6



MEMO 2016 Individual Competition I-2
I-2 C
There are n ě 3 positive integers written on a blackboard. A move consists of choosing
three numbers a, b, c on the blackboard such that they are the sides of a non-degenerate
non-equilateral triangle and replacing them by a` b´ c, b` c´ a and c` a´ b.

Show that an infinite sequence of moves cannot exist.

Solution 1. We will show that the product of all the numbers on the blackboard can never
increase. Indeed, for the three numbers a, b and c we have the inequalities

a2
ě a2

´ pb´ cq2 “ pa` b´ cqpa` c´ bq

b2
ě b2

´ pa´ cq2 “ pb` a´ cqpb` c´ aq

c2
ě c2

´ pa´ bq2 “ pc` a´ bqpc` b´ aq

Since by the conditions of the problem all factors on both sides are positive, we can multiply
these equations and obtain

a2b2c2
ě pa` b´ cq2pb` c´ aq2pc` a´ bq2,

which is equivalent to
abc ě pa` b´ cqpb` c´ aqpc` a´ bq. (1)

Since every non-increasing sequence of positive integers is eventually constant, we see that
the product of the numbers on the blackboard cannot change after a finite number of moves.
Furthermore, it is clear that we have equality in (1) if and only if a “ b “ c, in which case the
numbers on the blackboard do not change. It is now clear that after a finite number of moves
the numbers on the blackboard will not change.

Solution 2. Since pa` b´ cq ` pb` c´ aq ` pa` c´ bq “ a` b` c, it is clear that the sum of
the numbers on the blackboard is invariant. On the other hand, we learn from

pa` b´ cq2 ` pb` c´ aq2 ` pc` a´ bq2 “ a2
` b2

` c2
` pa´ bq2 ` pa´ cq2 ` pb´ cq2

that the sum of squares of the numbers increases in every move, except in the case a “ b “ c,
when nothing at all changes. But in view of the inequality

ř

x2
i ď p

ř

xiq
2, it now becomes

evident that the number of possible "moves with effect" is bounded by the constant right-hand
side.

7



MEMO 2016 Individual Competition I-2
Solution 3. Let m be the smallest integer on the blackboard and k the number of times that
m is written on the blackboard. The number n of numbers on the blackboard will stay fixed
throughout the process, while m and k might change.

We first prove that any move involving a number m will either decrease m or keeping m fixed
and increasing k or change nothing on the blackboard:

• If m “ a ď b ă c, we have a` b´ c ă a “ m, so the new minimum is clearly smaller than
the original m.

• If m “ a ă b “ c, we have a` b´ c “ c` a´ b “ a “ m, so the number k has increased
while m is fixed.

• If m “ a “ b “ c, nothing changes on the blackboard.

Now, if there are only finitely many moves that change anything and involve a minimal number
then we can conclude by induction on n that we can only make finitely many moves that change
anything. The most convenient base case is n “ 2 where nothing changes because no three
numbers can be chosen.

However, if there are infinitely many moves involving a minimal number that change something
then we have seen above that either m decreases or m is fixed and k increases. Since k is at
most n and m is at least 1 this is impossible, so the process has to terminate as desired.

(The same argument works with the maximum because it is bounded by the constant sum of
the written integers.)

8



MEMO 2016 Individual Competition I-3
I-3 G
Let ABC be an acute-angled triangle with >BAC ą 45˝ and with circumcentre O. The point
P lies in its interior such that the points A, P , O, B lie on a circle and BP is perpendicular to
CP . The point Q lies on the segment BP such that AQ is parallel to PO.

Prove that >QCB “ >PCO.

A B

C

O

P
QQ1

Solution 1. Since >BAC ą 45˝, we have >BOC ą 90˝, and the points A, P , O, B lie on a
circle in this order.

Instead of the equality >QCB “ >PCO, we show the equivalent statement >OCB “ >PCQ.

We know that >OCB “ 90˝ ´ >BAC and >PCQ “ 90˝ ´ >CQP . So we just need to show
>BAC “ >CQP . By the construction of P and Q, we have

>PQA “ >QPO “ >BPO “ >BAO “ >OBA “ 180˝ ´>APO “ >QAP,

so the triangle AQP is isosceles with PA “ PQ. Thus if Q1 denotes the point obtained by
reflecting Q about P , then >QAQ1 “ 90˝.

Moreover, reusing some part of the above calculation and exploiting that O is the circumcentre
of ABC, we find

>AQ1B “ >AQ1Q “ 90˝ ´>Q1QA “ 90˝ ´>PQA “ 90˝ ´>OBA “ >ACB,

which proves that the quadrilateral ABCQ1 is cyclic. Finally, since >QPC “ 90˝ and PQ “

PQ1, the triangle Q1QC is isosceles with CQ “ CQ1, whence

>CQP “ >CQQ1 “ >QQ1C “ >BQ1C “ >BAC,

as we wanted to show.

9



MEMO 2016 Individual Competition I-3
Another solution of the second part:

Let Q1 be the point of intersection of BP with the circumcircle of the traingle ABC. Then we
have

>BQ1C “ >BAC “ α and >AQ1B “ >ACB “ γ.

Since >Q1PA “ 180˝ ´ >APB “ 180˝ ´ 2γ we get >PAQ1 “ 180˝ ´ >AQ1B ´ >Q1PA “ γ

and triangle APQ1 is isosceles with PQ1 “ PA. Therefore we get PQ “ PA “ PQ1 and the
point P is the midpoint of QQ1.

Finally, since >QPC “ 90˝ and PQ “ PQ1, the triangle Q1QC is isosceles with CQ “ CQ1.
Therefore

>CQP “ >QQ1C “ >BAC,

as we wanted to show.

A B

C

O
P

Q

Y

Z

Solution 2. Since >BAC ą 45˝, we have >BOC ą 90˝, and the points A, P , O, B lie on a
circle in this order.

Instead of showing the equality >QCB “ >PCO, we prove the equivalent statement >OCB “

>PCQ.

Let Y be the point of intersection of AQ with the circle through A, O and B. Due to PO ‖ AY
the quadrilateral AY OP is an isosceles trapezoid with PA “ OY . Since AO “ OB, we can
conclude OP “ Y B, e.g. by proving the congruence of the triangles AOP and OBY . Therefore,
PBY O is an isosceles trapezoid as well and we get that PQY O is a parallelogram.

The triangle AQP is isosceles due to PA “ OY “ PQ and, in addition, similar to triangle
ABO because of >APB “ >AOB.

Now let Z be the midpoint of BC. Since >BPC “ 90˝, we know that Z is the center point
of the circle through P , B and C. Hence we get ZC “ ZP “ ZB. Since triangle PBZ is

10



MEMO 2016 Individual Competition I-3
isosceles, we have >ZBP “ >BPZ. Because of >ZBP “ >ZBY ` >Y BP and >BPZ “

>BPO ` >OPZ and >Y BP “ >BPO, we conclude >ZBY “ >OPZ. Now we have the
equality of two corresponding sides and the enclosed angle. Therefore, the triangles Y BZ and
POZ are congruent, yielding OZ “ Y Z.

Since >OZY “ 90˝ ´ >Y ZB “ 90˝ ´ >PZO “ >CZP and ZC “ ZP , we see that the
triangles OY Z and CPZ are similar. Therefore, we get

CP

OY
“
CZ

OZ
, hence CP

PQ
“
CZ

OZ
.

Now the similarity of the triangles PQC and OZC follows from >QPC “ >CZO “ 90˝ and
we get >PCQ “ >OCZ “ >OCB, which completes the proof.

11



MEMO 2016 Individual Competition I-4
I-4 N
Find all functions f : NÑ N such that fpaq ` fpbq divides 2pa` b´ 1q for all a, b P N.

Remark: N “ t1, 2, 3, . . .u denotes the set of positive integers.

Answer. The only solutions are the constant function fpaq “ 1 for all a P N and the function
fpaq “ 2a´ 1 for all a P N.

Solution 1. We will first prove that f is either injective or bounded.

Assume that we have fpmq “ fpnq “ t for some m and n. If we plug in m and n as b, we get
respectively:

fpaq ` t | 2pa`m´ 1q

fpaq ` t | 2pa` n´ 1q.

Since the divisor of two numbers must divide their difference, we get fpaq ` t | 2m´ 2n. That
means that if f is not bounded, it is injective, because then we must have m “ n.

Case 1: f is injective

If we put a “ b “ 1 in the given relation, we get fp1q “ 1. Putting a “ b gives us fpaq | 2a´ 1.
Since f is injective, we can now prove by induction that fpaq “ 2a ´ 1 for a “ 2, 3, . . . since
all smaller divisors of 2a´ 1 are already attained by previous values of f .

Case 2: f is bounded

If f is bounded, the maximum of f exists and for any a P N we can choose a prime p that is
greater than a and at least three times greater than this maximum. We can now choose b P N
such that a ` b ´ 1 “ p and we get fpaq ` fpbq | 2p. Clearly, fpaq ` fpbq ă p because of our
choice of p. So we must have fpaq ` fpbq “ 2, which gives us fpaq “ 1 for all a P N.

It is easily checked that the functions fpnq “ 2n´ 1 and fpnq “ 1 satisfy the condition of the
problem.

Solution 2. Setting a “ b gives fpaq | 2a ´ 1, which implies that fp1q “ 1 and that fpaq is
odd for all a. Setting a “ 2 and b “ 1 gives fp2q ` 1 | 4, therefore fp2q “ 1 or fp2q “ 3.

Case 1: fp2q “ 1.

We choose b “ 1 and b “ 2 to obtain fpaq`1 | 2a and fpaq`1 | 2a`2, which implies fpaq`1 | 2
and therefore fpaq “ 1 for all a. The constant function fpaq “ 1 is clearly a solution.

Case 2: fp2q “ 3.

12



MEMO 2016 Individual Competition I-4
We first show that fpaq “ 2a ´ 1 for a ą 1 implies fpa ` 2q “ 2a ` 3. Setting b “ a ` 2 gives
fpa ` 2q ` 2a ´ 1 | 2p2a ` 1q. If fpa ` 2q “ 1, then a | 2a ` 1. This implies a “ 1, which was
excluded. Therefore, the odd number fpa`2q is greater than 2, so fpa`2q`2a´1 is a divisor
of 2p2a ` 1q that is greater than 2a ` 1 (half of 2p2a ` 1q). Thus fpa ` 2q ` 2a ´ 1 must be
equal to 2p2a` 1q, which gives fpa` 2q “ 2a` 3 as desired.

Therefore, fp2q “ 3 implies fp4q “ 7. Now, setting a “ 3 and b “ 4 gives fp3q ` 7 | 12, which
implies fp3q “ 5.

Since we now know that fpaq “ 2a´ 1 holds for 1, 2, 3, 4 and we can use induction in steps of
two, we get fpaq “ 2a´ 1 for all a, which is clearly a solution.

The two solutions are fpaq “ 1 for all a and fpaq “ 2a´ 1 for all a.

Solution. 3. We have fp1q “ 1 and fpaq | p2a´ 1q as in the previous solution.

If fp2q “ 1, then fpaq “ 1 for all a as in the previous solution.

Therefore, we only have to consider fp2q “ 3. We easily check that fpaq “ 2a´ 1 for all a is a
solution.

Choose k maximally such that fpaq “ 2a ´ 1 holds for all 1 ď a ď k. Then setting a “ k and
b “ k ` 1 yields

2k ´ 1` fpk ` 1q “ fpkq ` fpk ` 1q | 4k,

which by maximality of k implies that fpk ` 1q “ 1.

Setting a “ k ´ 1 and b “ k ` 1 yields

2k ´ 2 “ fpk ´ 1q ` fpk ` 1q | 2pk ´ 1` k ` 1´ 1q “ 4k ´ 2,

which also implies 2k ´ 2 | pp4k ´ 2q ´ 2p2k ´ 2qq “ 2 and thus k “ 2.

We conclude that fp3q “ 1 and fp4q | 7. If fp4q “ 1, then

4 “ fp2q ` fp4q | 10,

a contradiction. Thus fp4q “ 7. This leads to the contradiction

8 “ fp3q ` fp4q | 12.

Thus there are only the constant solution and the solution fpaq “ 2a´ 1 for all a.

13



MEMO 2016 Individual Competition I-4
Solution 4. We have fp1q “ 1 and fpaq | p2a´ 1q as in the previous solutions.

If fp2q “ 1, then fpaq “ 1 for all a as in the previous solutions.

Therefore, we only have to consider fp2q “ 3.

Let p be a prime with p ” ´1 pmod 4q. Since we already know that fpaq | 2a ´ 1, we get
f
`

p`1
2

˘

| p which implies that f
`

p`1
2

˘

is either 1 or p.

If f
`

p`1
2

˘

“ 1 then we choose a “ 2 and b “ p`1
2 in the original equation and get 4 | p`3 which

is impossible. Therefore, f
`

p`1
2

˘

“ p for all such primes p.

Now we choose b “ p`1
2 in the original equation and get

fpaq ` p | 2a´ 1` p ùñ fpaq ` p | 2a´ 1´ fpaq.

Since there exist arbitrarily large primes p with p ” ´1 pmod 4q, the right-hand side has to be
0, so fpaq “ 2a´ 1 which is indeed a solution.

14



MEMO 2016 Team Competition T-1
T-1 A
Determine all triples pa, b, cq of real numbers satisfying the system of equations

a2
` ab` c “ 0,

b2
` bc` a “ 0,

c2
` ca` b “ 0.

Answer. The solutions are

pa, b, cq P

"

p0, 0, 0q,
ˆ

´
1
2 ,´

1
2 ,´

1
2

˙*

.

Solution. If one of the numbers a, b and c is equal to zero, it is easy to see that the other two
numbers also have to be equal to zero, which gives us the solution p0, 0, 0q.

Now assume that a, b, c ‰ 0.

If all three numbers are positive, then the left-hand side of each equation is positive, while the
right-hand sides are equal to zero, which is impossible.

Let us assume that only one of the numbers is positive, and without loss of generality let it be
a. Since b, c ă 0, it follows that b2 ` bc` a ą 0, which is a contradiction.

It remains to consider the two following cases:

(a) All three numbers are negative.

We substitute a “ ´x, b “ ´y and c “ ´z, where x, y, z ą 0. The original system
transforms into

x2
` xy “ z (1)

y2
` yz “ x (2)

z2
` zx “ y.

The system is cyclic, so we can assume that x ď y and x ď z. Now we have

x2
` xy “ z ě x ùñ x` y ě 1,

y2
` yz “ x ď y ùñ y ` z ď 1.

15



MEMO 2016 Team Competition T-1
From the previous two inequalities we conclude that

x` y ě 1 ě y ` z, i.e. x ě z.

On the other hand x ď z, so we get x “ z.

Now, from equation (1) it follows that x` y “ 1, while from equation (2) it follows that

x “ y2
` yz “ y2

` yx “ ypy ` xq “ y.

Thus x “ y “ z and from x` y “ 1 we see that x “ y “ z “ 1{2.

We easily verify that pa, b, cq “
`

´1
2 ,´

1
2 ,´

1
2

˘

is indeed a solution.

(b) Exactly one of the numbers is negative.

Without loss of generality we can assume that c is negative, while a and b are positive.
From the second equation we conclude that bpb` cq “ ´a ă 0, thus b` c ă 0. The third
equation yields cpa` cq “ ´b ă 0, thus a` c ą 0.

Adding a` b to the first equation and cyclic permutation yields

a` b` c “ p1´ aqpa` bq “ p1´ bqpb` cq “ p1´ cqpc` aq.

The last product is positive. This implies that 1 ´ a ą 0 and 1 ´ b ă 0 by our above
considerations. Therefore 0 ă a` c ă 1` c ă b` c ă 0, a contradiction.

Solution by symmetric functions. We set

p :“ a` b` c, q :“ ab` ac` bc, r “ abc. (3)

Our strategy will be to determine p, q and r by considering equations of the form
ÿ

cyc
fpa, b, cqpa2

` ab` cq “ 0.

By setting fpa, b, cq “ 1, we find p2 ´ q ` p “ 0.

By setting fpa, b, cq “ b, we find pq ´ 3r ` q “ 0.
(Here we use the general identity

ř

cycpa
2b` ab2q “ pq ´ 3r.)

By setting fpa, b, cq “ c2, we find pq2 ´ 2prq ` pr ` pp3 ´ 3pq ` 3rq “ 0.

By elimination of q “ p2 ` p and r “ pq`q
3 “

ppp`1q2
3 we find

pp2
` pq2 ´ p ¨

ppp` 1q2
3 ` p3

´ 3ppp2
` pq ` ppp` 1q2 “ 0,

16
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which is equivalent to

0 “ 2p4
` p3

´ p2
` 3p “ pp2p` 3qpp2

´ p` 1q.

Now we see that either p “ 0 or p “ ´3
2 .

In the case p “ 0 we find that also q “ 0 and r “ 0, whence a “ b “ c “ 0. In the case p “ ´3
2

we find q “ 3
4 and r “ ´1

8 , hence a, b, c are the solutions to the cubic equation

0 “ x3
`

3
2x

2
`

3
4x`

1
8 “

ˆ

x`
1
2

˙3

.

This gives a “ b “ c “ ´1
2 .

Solution. As in the first solution, we prove that as soon as one of the variables is 0, all three
variables have to be 0. Obviously, the triple p0, 0, 0q is a solution. From now on, we may
therefore assume that all three variables are non-zero.

We can rewrite the system of equations as

´c “ apa` bq,

´a “ bpb` cq,

´b “ cpc` aq.

Multiplying these equations and dividing by abc ‰ 0 gives

pa` bqpb` cqpc` aq “ ´1. (4)

On the other hand by summing up the equations we get

´ a´ b´ c “ a2
` b2

` c2
` ab` bc` ac. (5)

Now we substitute
x “ a` b, y “ b` c, z “ c` a.

which transforms equation (4) and (5) into

xyz “ ´1, ´
x` y ` z

2 “
x2 ` y2 ` z2

2 (6)

Now we calculate

3px2
` y2

` z2
q ě p|x| ` |y| ` |z|q2 ě |x` y ` z|2 “ px2

` y2
` z2

q
2
ě 32 3

a

x2y2z22
“ 9,
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where the first inequality comes from Cauchy-Schwarz (or QM-AM), the second one from the
triangle inequality and the last one from AM-GM. The equalities come from (6).

Now, if we denote S “ x2 ` y2 ` z2, we have the inequalities

3S ě S2
ě 9,

and because we trivially have S ą 0 (note that S “ 0 would imply x “ y “ z “ 0 and hence
a “ b “ c “ 0, which has already been excluded), we can split it into the inequalities 3 ě S

and S ě 3, so we have equality and actually all the inequalities are equalities.

The case of equality for the triangle equality is when all nonzero x, y, z have the same sign
and, in view of equations 6, the only possibility is that x, y, z are all negative. Moreover, in the
last inequality, we have equality exactly when x2 “ y2 “ z2 and, because they have the same
sign, it means x “ y “ z. Finally, in view of xyz “ ´1, the only possibility is x “ y “ z “ ´1.
By definition of x, y, z the values of a, b, c are then

pa, b, cq “

ˆ

´1
2 ,
´1
2 ,
´1
2

˙

and this is indeed a solution.
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T-2 A
Let R denote the set of real numbers. Determine all functions f : RÑ R such that

fpxqfpyq “ xfpfpy ´ xqq ` xfp2xq ` fpx2
q

holds for all real numbers x and y.

Answer. There are two solutions:

f : RÑ R : x ÞÑ 0, g : RÑ R : x ÞÑ 3x.

Solution. We set x “ 0 and get fp0qfpyq “ fp0q, so fp0q “ 0 or fpyq “ 1 for all y. The latter
leads to a contradiction.

We set y “ x` z and get

fpxqfpx` zq “ xfpfpzqq ` xfp2xq ` fpx2
q (1)

for all x and z. Setting z “ 0 yields

fpxq2 “ xfp2xq ` fpx2
q. (2)

We set C “ fp1q. For x “ 1 and x “ 2, we get fp2q “ CpC ´ 1q and fp4q “ C2pC ´ 1q2{3,
respectively.

If C “ 0, so (1) with x “ 1 yields fpfpzqq “ fp2q “ 0, so (1) reads fpxqfpx`zq “ xfp2xq`fpx2q

for all z, which implies that fpxq “ 0 for all x.

Setting x “ 1 and x “ 2 in (1) leads to

Cfpz ` 1q “ fpfpzqq ` C2,

CpC ´ 1qfpz ` 2q “ 2fpfpzqq ` C2
pC ´ 1q2.

Eliminating fpfpzqq and division by C ‰ 0 leads to

pC ´ 1qfpz ` 2q ´ 2fpz ` 1q “ CpC2
´ 2C ´ 1q (3)

for all z. Setting z “ ´1 leads to CpC ´ 1q “ CpC2 ´ 2C ´ 1q. In view of C ‰ 0, this implies
C “ 3. Inserting this in (3), dividing by 2 and shifting z leads to

fpz ` 1q ´ fpzq “ 3

for all z.
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We set z “ 1 in (1) and get

fpxqpfpxq ` 3q “ 9x` xfp2xq ` fpx2
q.

Together with (2), we get 3fpxq “ 9x, i.e., fpxq “ 3x for all x.

Both fpxq “ 3x and fpxq “ 0 are solutions.

Alternative Solution. Setting x “ 0 in the original equation gives fp0qfpyq “ fp0q. If
fp0q ‰ 0 then fpxq “ 1, x P R, but this function does not satisfy the original equation. Hence,
fp0q “ 0.

Setting y “ 0 and y “ x in the original equation we get

0 “ xfpfp´xqq ` xfp2xq ` fpx2
q, fpxq2 “ xfp2xq ` fpx2

q. (4)

In combination this gives

´xfpfp´xqq “ fpxq2 and xfpfpxqq “ fp´xq2, x P R.

Multiplying the original equation by y ´ x gives

py´ xqfpxqfpyq “ xpy´ xqfpfpy´ xqq ` py´ xqpxfp2xq ` fpx2
qq “ xfpx´ yq2 ` py´ xqfpxq2,

which gives
xfpx´ yq2 “ py ´ xqfpxqpfpyq ´ fpxqq. (5)

Now setting x “ 2y ‰ 0 in (5) we get

2yfpyq2 “ ´yfp2yqpfpyq ´ fp2yqq

and consequently

0 “ fp2yq2 ´ fpyqfp2yq ´ 2fpyq2 “ pfp2yq ` fpyqqpfp2yq ´ 2fpyqq.

Thus, for any y ‰ 0 (and for y “ 0 as well) we have fp2yq “ ´fpyq or fp2yq “ 2fpyq.

Setting y “ 2x ‰ 0 in (5) we get

xfp´xq2 “ xfpxqpfp2xq ´ fpxqq

and consequently
fp´xq2 ` fpxq2 “ fpxqfp2xq.
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If fp2xq “ ´fpxq holds for some x P R, then fp´xq2` 2fpxq2 “ 0 implies fp´xq “ fpxq “ 0 “
fp2xq. Hence, the equality fp2xq “ 2fpxq holds for all x P R.

Replacing y by y ` x in the original equation and using (4) gives

fpxqfpx` yq “ xfpfpyqq ` xfp2xq ` fpx2
q “ xfpfpyqq ` fpxq2. (6)

Now setting y “ x gives 2fpxq2 “ xfpfpxqq ` fpxq2, which means fpxq2 “ xfpfpxqq. Multiply-
ing (6) by y yields

yfpxqfpx` yq “ xfpyq2 ` yfpxq2 (7)

Here we can deduce that fpxq “ 0 implies x “ 0, unless f is identically 0. Now we can
interchange x and y and achieve yfpxqfpx ` yq “ xfpyqfpx ` yq. Setting y “ 1 now gives
fpxq “ xfp1q for all x ‰ ´1. However, we also have

fp´1q “ 1
2fp´2q “ 1

2 ¨ p´2qfp1q “ ´fp1q,

so fpxq “ xfp1q is valid for all x. Plugging in fpxq “ cx easily gives c “ 0 or c “ 3. Hence
these are the two solutions.
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T-3 C
A tract of land in the shape of an 8 ˆ 8 square, whose sides are oriented north–south and
east–west, consists of 64 smaller 1 ˆ 1 square plots. There can be at most one house on each
of the individual plots. A house can only occupy a single 1ˆ 1 square plot.

A house is said to be blocked from sunlight if there are three houses on the plots immediately
to its east, west and south.

What is the maximum number of houses that can simultaneously exist, such that none of them
is blocked from sunlight?

Remark: By definition, houses on the east, west and south borders are never blocked from
sunlight.

Answer. The maximal number of houses is 50.

Solution. Let us represent the tract as an 8 ˆ 8-chessboard, with cells colored black if the
corresponding parcel is occupied, and white otherwise. We denote by pi, jq the cell in the i´th
row and j´th column (with the first row being the northernmost and the first column being the
westernmost). We start by showing that an optimal configuration can be obtained by coloring
all the cells along the east, south, and west borders.

Assume that there is an optimal configuration in which one of those cells, for example pi, 1q,
is left white. Since we have an optimal configuration, this cell cannot be colored black. This
means that by coloring pi, 1q, we would block the cell pi, 2q. In other words, we know that the
cells pi, 2q, pi, 3q and pi` 1, 2q are all colored black in this optimal configuration. However, we
now see that we can color pi, 1q instead of pi, 2q, keeping the same number of black cells and
coloring pi, 1q, without disturbing any of the other cells.

We can apply the same reasoning to any of the cells p1, 1q ´ p8, 1q, p8, 1q ´ p8, 8q and, similarly,
to p8, 8q´p1, 8q, thus showing that there is an optimal configuration in which all the cells along
the E, S, W borders are colored black.

Those cells being colored, we are left with a 7ˆ 6 area of the board. We can now show that no
more than 28 cells in this area can be colored black. In order to obtain 28, the average number
of black cells per row has to be 4. However, if any row contains six black cells, the next row
down cannot contain any black cells, since such a black cell would block the cell immediately
north of it. Similarly, if a row were to contain 5 black cells, the next row down would be able
to contain at most 3 black cells (namely in the cell immediately below the single white one and
the two next to it). This shows that the average number of black cells per row in our 7ˆ6 area
cannot be greater than 4.
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(a) (b)

Figure 1: Alternative Solution

This gives us an upper bound on the total number of black cells: the 22 border cells plus 28
cells in the remaining 7ˆ 6 area, i.e., 50 cells in total.

An example to show that 50 can indeed be achieved is the following. We color the columns
1, 2, 4, 5, 7, 8 and row 8 black, leaving the other cells white. This coloring clearly satisfies the
conditions and contains exactly 50 black cells, completing the proof.

Alternative Solution. By building a house on each dark grey plot in Figure 1(a), we see that
50 houses can be built accordingly.

We will prove that no more than 50 houses can be built, or, equivalently, that at least 14 plots
remain empty. Consider the 14 4ˆ1 rectangles in Figure 1(b) marked by their thick boundary.
We will uniquely assign one empty plot to each of these 14 rectangles as follows:

• if the rectangle contains at least one empty plot, assign to it the easternmost such plot;

• if the rectangle contains no empty plots, assign to it the westernmost empty plot in the
rectangle directly to the south of it.

In order to see that this assignment is feasible, note that if some rectangle contains no empty
plots, then its two central houses are blocked from sunlight from the east and west. Therefore,
the two central plots of the rectangle directly to the south of it must be empty, showing that
we can indeed assign its westernmost empty plot to the original rectangle while leaving its
easternmost empty plot unassigned. The above assignment is thus feasible and shows that
there are at least 14 empty plots, concluding the proof.
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T-4 C
A class of high school students wrote a test. Every question was graded as either 1 point for
a correct answer or 0 points otherwise. It is known that each question was answered correctly
by at least one student and the students did not all achieve the same total score.

Prove that there was a question on the test with the following property: The students who
answered the question correctly got a higher average test score than those who did not.

Solution. Let n be the number of the students in the class and a their average score. Denote
by P and S the set of all problems, and the set of all students resp., and let Sppq be the
non-empty set of students who solved problem p P P . For any student s, let scpsq be the score
of s. For any proposition A, let rAs “ 1 if A is true and 0 if A is false.

We will prove the assertion by contradiction. Assume that on all questions the average test
score of solvers was at most the general average a, that is

a ě
1

|Sppq|

ÿ

sPSppq

scpsq ô a|Sppq| ě
ÿ

sPSppq

scpsq.

We now sum these inequalities over all problems p P P to get

a
ÿ

pPP

|Sppq| ě
ÿ

pPP

ÿ

sPSppq

scpsq

ô a
ÿ

pPP

ÿ

sPS

rs solved ps ě
ÿ

pPP

ÿ

sPS

rs solved ps
ÿ

qPP

rs solved qs

ô a
ÿ

sPS

scpsq ě
ÿ

sPS

˜

ÿ

pPP

rs solved ps
¸

¨

˜

ÿ

qPP

rs solved qs
¸

ô
1
n

˜

ÿ

sPS

scpsq
¸2

ě
ÿ

sPS

scpsq2.

However, this is the reverse of the inequality between the arithmetic and the quadratic mean.
Since the case of equality, namely that scpsq is the same for all s P S, is excluded by the problem
statement, we arrive at the desired contradiction.
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T-5 G
Let ABC be an acute-angled triangle with AB ‰ AC, and let O be its circumcentre. The line
AO intersects the circumcircle ω of ABC a second time in point D, and the line BC in point
E. The circumcircle of CDE intersects the line CA a second time in point P . The line PE
intersects the line AB in point Q. The line through O parallel to PE intersects the altitude of
the triangle ABC that passes through A in point F .

Prove that FP “ FQ.

A

C

B

ω

O

DE

P

Q

F “ F 1

Solution 1. Let us denote >ABC by β and >BCA by γ. Without loss of generality, AB ą
AC, or equivalently β ă γ, as in the figure.

Segment AD is a diameter of ω, so by Thales’ theorem we have >DCA “ 90˝. Since the
quadrilateral CEDP is cyclic, we get >PED “ 90˝, which immediately gives >AEQ “ 90˝.

Since >EAQ “ >OAB “ 90˝ ´ γ, we also get >AQP “ >AQE “ γ. Since CEDP is cyclic,
we get >ADP “ >EDP “ 180˝ ´ >PCE “ >ACB “ γ. This means that the quadrilateral
AQDP is cyclic.

Let us denote the circumcentre of AQDP by F 1. We show that F “ F 1.

We have >APQ “ 180˝ ´>CAB ´>AQP “ β. Hence >F 1AQ “ 90˝ ´ β, which implies that
F 1 lies on the altitude of ABC that passes through A.

Moreover, by definition F 1 must lie on the perpendicular bisector of AD, which is the line
through O parallel to PE.

So we get F 1 “ F , and consequently FP “ FQ.
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A

B

C

O

D

E

F

P 1

Q1

Solution 2. Let α, β and γ denote the angles of ABC in the natural way.

Point F is defined as the intersection point of the perpendicular bisector of diameter AD with
the altitude of triangle ABC through A. We define points P 1 and Q1 as the intersection points
of the circle with center F passing through A (and therefore also through D) with sides AC
and AB, respectively. First we show P “ P 1.

We calculate
>EDP 1 “ >ADP 1 “ >AQ1P 1 “ >AQ1F `>FQ1P 1 “

>AQ1F `
180˝ ´>Q1FP 1

2 “ 90˝ ´ β ` 90˝ ´ α “ γ “ 180˝ ´>ECP 1.

So we have that P 1 is the intersection of the circumcircle of triangle EDC with AC and therefore
we have P “ P 1.

Now we prove Q “ Q1. We have

>ABC “ >ADC “ >EDC “ >EPC “ >Q1PA “ >Q1DA “ β

and therefore quadrilateral BDEQ1 is cyclic. Since >DBQ1 “ 90˝ we get Q1E K AD. Together
with >DEP 1 “ >DEP “ 90˝ we have that Q1 lies on the line PE and thus Q1 “ Q. Therefore
we have proven FP “ FQ.
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Solution 3. Let us denote =ABC by β and =BCA by γ and the foot of the altitude from A

by G. Without loss of generality let AB ą AC, or equivalently β ă γ, as in the figure.

A B

C

ω

O

E
D

P

Q

C1

B1

O1

ω1

G

F

ω2

Let ω1 be the reflection of ω about the angle bisector of =BAC. Since =EAB “ =OAB “

=CAG “ 90˝ ´ γ, the center O1 of ω1 lies on the altitude from A and AO “ AO1. The circle
ω1 intersects AB for the second time at C1 with AC “ AC1 and AC for the second time at B1

with AB “ AB1.

Now, if we can prove
AC1 : AQ “ AB1 : AP “ AO1 : AF,

then there is a homothety with center A which maps C1 Ñ Q, B1 Ñ P and O1 Ñ F . Hence P
and Q lie on a circle ω2 with center F and and the problem is solved.

Therefore it remains to prove AC1 : AQ “ AB1 : AP “ AO1 : AF.

The triangles AOF and AGE are similar, so we have AF “ AO¨AE
AG

. Due to segment AD being
a diameter of ω, we have =DCA “ 90˝ by Thales’ theorem. Since the quadrilateral CEDP is
cyclic, we get =PED “ 90˝, which immediately gives =AEQ “ 90˝. Since =EAQ “ =OAQ “

90˝ ´ γ, we have AQ “ AE
sin γ and with AC “ AG

sin γ , we get

AC1 : AQ “ AC : AQ “ AG

sin γ : AEsin γ “ AG : AE “ AO : AO ¨ AE
AG

“ AO1 : AF.

Similarly we can prove AB1 : AP “ AO1 : AF and we are ready.
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T-6 G
Let ABC be a triangle with AB ‰ AC. The points K, L, M are the midpoints of the sides
BC, CA, AB, respectively. The inscribed circle of ABC with centre I touches the side BC at
point D. The line g, which passes through the midpoint of segment ID and is perpendicular
to IK, intersects the line LM at point P .

Prove that >PIA “ 90˝.

Solution 1. Let pXY Zq denote the circumcircle of a triangle XY Z. We use the following
well-known lemma:

Lemma. The centre of the circle pBICq is the midpoint of arc BC of circle pABCq and
therefore lies on the angle bisector of >BAC.

B C

A

K

LM

I

D

H

P

Y

X

k

g

Now assume without loss of generality that AB ă AC, as in the figure. Let the circle pBICq
cut AB and AC at X and Y respectively. From the lemma it follows that X is symmetric to
C, and Y is symmetric to B with respect to the angle bisector of >BAC. We have

MX¨MB “ pAX´AMq¨MB “ pAC´AMq¨MB “
p2AC ´ ABq ¨ AB

4 “
AC2

4 ´

ˆ

AC ´ AB

2

˙2

,
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and since AC

2 “MK and

AC ´ AB

2 “
BC

2 ´
AB `BC ´ AC

2 “ BK ´BD “ DK,

we get
MX ¨MB “MK2

´DK2.

So M lies on the radical axis of the circle pBICq and the circle k, which is the circle with
midpoint K and radius DK. An analogous calculation shows that L lies on it as well, so the
line through M and L is the radical axis of circles pBICq and k. Obviously g is the radical
axis of circle k and point I (regarded as a degenerate circle). Thus P is the radical centre of
pBICq, k, and I. It follows that P also lies on the radical axis of pBICq and I, which is the
line perpendicular to AI passing through I. This shows that >PIA “ 90˝.

B C

A

K

LM

I

D

X

P

Y

S

T

Solution 2. Let X be the midpoint of ID, and let Y be the midpoint of AD (which is also
the intersection of AD with LM). Clearly, XY is parallel to AI.

Next we show that IK passes through Y . To this end, let S be the intersection of AI with
BC, and let T be the intersection of KI with the line through A that is parallel to BC. Note
that triangles ATI and SKI are similar.

By the angle bisector theorem, we have

AT

KS
“
AI

IS
“
AB

BS
,
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so

AT “
AB ¨KS

BS
“
AB ¨ pBK ´BSq

BS
“
AB ¨BK

BS
´ AB.

Using the angle bisector theorem once again, we get

AT “
pAB ` ACq ¨BK

BC
´AB “

AB ` AC

2 ´AB “
BC

2 ´
AB `BC ´ AC

2 “ BK´BD “ DK.

Thus DKAT is a parallelogram, which means that AD and KT meet at Y , the midpoint of
AD.

Now we know that KI passes through Y , and by definition it is perpendicular to XP . Hence
it is an altitude in XY P . Moreover, DI is clearly also an altitude in XY P (it passes through
X and is perpendicular to PY ). Thus I is the orthocentre of XY P , which means that PI is
perpendicular to XY and thus also to AI. This proves the desired statement.

A

B

C

I

D

K
L

M

Y

X

P

Z

Solution 3. Let X, Y , Z be reflections of D about I, K, P respectively.

We shall prove that A,X, Y are collinear. Since K is the midpoint of segments BC, DY , we
have BD “ CY . Therefore Y is the common point of segment BC and the A-excircle. Consider
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homothety centered at A mapping incircle to A-excircle. It’s easy to see that this homothety
maps X to Y . Therefore A,X, Y are collinear.

Consider homothety with centre D and ratio 2. We easily see that AZ ‖ LM . Since IX K

BC ‖ LM , we have
IX K AZ.

Moreover IZ ‖ g K KI ‖ XY . Since A,X, Y are collinear, we have

IZ K AX.

Thus X is the orthocentre of triangle AIZ. Therefore ZX K AI. Since ZX ‖ PI, we conclude
that PI K AI. In other words,

=PIA “ 90˝.

Solution 4. Let a, b, c be the sides of the triangle, s “ a`b`c
2 the half-perimeter, ρ the radius

of the inscribed circle, α, β, γ the angles and A the area of the triangle.

In the coordinate plane, let B “ p0, 0q be the origin and C “ pa, 0q. Then A “ pc cos β, c sin βq.
We get:

I “ ps´ b, ρq, D “ ps´ b, 0q, H “

´

s´ b,
ρ

2

¯

(midpoint of DI), K “

´a

2 , 0
¯

.

The line g that passes through H and is perpendicular to IK has the following equation:

´

s´ b´
a

2

¯

x` ρy “
´

s´ b´
a

2

¯

ps´ bq `
ρ2

2 .

This is equivalent to
pc´ bqx` 2ρy “ pc´ bqps´ bq ` ρ2.

On the other hand, the line h “ LM that is parallel to the x-axis has the equation

y “
c

2 sin β.

We deduce that P (the intersection of g and h) has the coordinates

P “
´

s´ b`
ρ2 ´ ρc sin β

c´ b
,
c

2 sin β
¯

.

Now we have to prove that
ÝÑ
AI ¨

ÝÑ
IP “ 0,
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which is equivalent to

ps´ b´ c cos βq ¨ ρ
2 ´ ρc sin β
c´ b

` pρ´ c sin βq
´ c

2 sin β ´ ρ
¯

“ 0.

Since ρ´ c sin β ‰ 0, we can cancel the factor ρ´ c sin β to obtain the equation

ps´ b´ c cos βqρ` pc´ bq
´ c

2 sin β ´ ρ
¯

“ 0,

which is equivalent to
2ρps´ cq ´ 2ρc cos β ` cpc´ bq sin β “ 0.

Now we use the well-known identities ρ “ A
s
and ac sin β “ 2A to end up with the equation

aps´ cq ´ ac cos β ` spc´ bq “ 0.

Since this is equivalent to
b2
“ a2

` c2
´ 2ac cos β,

which holds by the law of cosines, the proof is complete.

Solution 5. Let S be the point of intersection of the interior angle bisector of =BAC and BC,
H the midpoint of ID, R the point of intersection of LM and ID, Q the point of intersection
of LM and the altitude from A, r the inradius and h the length of the altitude from A.

Since KD and PR are perpendicular to RD and IK is perpendicular to PH, we have =IKS “

=IHP and =RPH “ =DIK. So the triangles RPH and DIK are similar. We have PH :
HR “ IK : KD and since HR “ h´r

2 and KD “ a
2 ´

a`b´c
2 “ c´b

2 we conclude

PH “
IKph´ rq

pc´ bq
.

Now we want to show that the triangles IKS and PHI are similar. Since =IKS “ =PHI, it
suffices to prove that IK : KS “ PH : HI.
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B C

A

I

M L

DK

H

P

Q

S

g

R

With the angle bisector theorem we get SC “ ab
b`c

and we deduce
KS “ a

2 ´
ab
b`c

“
apc´bq
2pb`cq .

Now we have

PH : HI “ IK : KS ðñ IKph´ rq

pc´ bq
: r2 “ IK : apc´ bq2pb` cq ðñ rpa` b` cq “ ah

and we are done, because rpa` b` cq “ ah = twice the area of the triangle ABC.

Hence the triangles IKS and PHI are similar and we conclude that the triangles PIR und
ISD are similar too. Now we have

=QPI “ =RPI “ =DIS “ =QAI

and it follows that APIQ is cyclic, and consequently

90˝ “ =PQA “ =PIA.
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T-7 N
A positive integer n is called a Mozartian number if the numbers 1, 2, . . . , n together contain
an even number of each digit (in base 10).

Prove:

(a) All Mozartian numbers are even.

(b) There are infinitely many Mozartian numbers.

Solution 1.

(a) Note that we need an even number of digits alltogether if every digit occurs an even
number of times. There is an odd number of numbers with one digit. For k ą 1, there
are 9 ¨ 10k´1 numbers with k digits, which is an even number. Thus we need to end after
a segment of odd length of numbers with an odd number of digits, i.e., we end on an even
number, so a Mozartian number is indeed even.

(b) The numbers n “ 2 . . . 2
loomoon

2`

0 are Mozartian numbers for all natural numbers `: There are an

even number of least significant digits 0, 1, . . . , 9; and all other digits at higher positions
except for those in n are repeated 10 times in a row which does not change the parities
of occurrences. The leading 2` digits 2 of n do not change parities, either.

Solution 2.

(a) Let k be any integer ě 0. In the pairing p2, 3q, p4, 5q, ..., p2k, 2k`1q, the members of each
pair need the same number of digits, so each pair needs an even number of digits together,
so alltogether the numbers from 1 to 2k ` 1 need an odd number of digits. Therefore,
any Mozartian number has to be even because the total number of digits used up to a
Mozartian number has to be even.

(b) We will show that 102k ` 22 are Mozartian numbers for all natural numbers k.

We first note that by the proof of the first part, we know that we need an odd number
of digits up to 102k ` 21, and therefore an even number of digits up to 102k ` 22. So it is
sufficient to check that the digits 1, 2, . . . , 9 occur an even number of times because the
condition for 0 will be automatically satisfied.

Now, we will consider the numbers from 0 to 102k ´ 1 as numbers with 2k` 1 digits with
leading zeros where necessary. Clearly, each digit must occur equally often. Since the
number of all digits in this list is divisible by 100, this quantity is still divisible by 10,
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therefore even. This proves that nonzero digits occur an even number of times in this
interval.

It remains to consider the numbers 102k, 102k ` 1, . . . , 102k ` 22. Clearly, the leading
ones occur an odd number of times. Since the list 1, 2, . . . , 22 contains an odd number of
ones and an even number of the other digits, the proof is finished.

Solution 3. (only Part (b))

We will first show that for any k ě 1 the numbers from 0 to 20k ´ 1 together contain an even
number of each digit from 0 to 9.

The units digits clearly run from 0 to 9 an even number of times, so they contribute an even
number to each digit count. For any possible fixed choice of all digits except the units digits,
there are 10 numbers that satisfy this condition, so again, they contribute an even number to
each digit count which proves the assertion.

Consider now the numbers from 1 to M “ 20k where M has a decimal representation that
contains an odd number of zeros and an even number of each digit from 1 to 9. Since the odd
number of zeros compensates for the missing zero that was counted in the above assertion, we
find that M is a Mozartian number.

There are clearly infinitely many such numbers, for example all numbers of the form 22 . . . 20
that contain an even number of 2s.

Comment. The argument of Solution 3 shows that Mozartian numbers that are multiples of 20
are exactly those multiples that contain an odd number of 0s and an even number of all other
digits.

By an analogous argument, one can now find all Mozartian numbers. The following table lists
the parity restrictions on the digit counts for each possible even residue modulo 20 where e
stands for even and o stands for odd. The rows list the different possible residues and the
columns lists the digits from 0 to 9. For example, 10198 is a Mozartian number because it has
residue 18 modulo 20 and the digits that occur an odd number of times are 0, 8 and 9. These
conditions are the only restrictions on Mozartian numbers.
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0 1 2 3 4 5 6 7 8 9

0 o e e e e e e e e e
2 e o e e e e e e e e
4 e o o o e e e e e e
6 e o o o o o e e e e
8 e o o o o o o o e e
10 e o o o o o o o o o
12 o e o o o o o o o o
14 o e e e o o o o o o
16 o e e e e e o o o o
18 o e e e e e e e o o
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T-8 N
We consider the equation a2 ` b2 ` c2 ` n “ abc, where a, b, c are positive integers.

Prove:

(a) There are no solutions pa, b, cq for n “ 2017.

(b) For n “ 2016, a must be divisible by 3 for every solution pa, b, cq.

(c) The equation has infinitely many solutions pa, b, cq for n “ 2016.

Solution 1.

(a) We distinguish cases depending on the parity of a, b, c:

• If all three are odd, we have a2 ` b2 ` c2 ` 2017 ” 0 pmod 2q and abc ” 1 pmod 2q.

• If exactly one of them is even, we have a2` b2` c2` 2017 ” 1 pmod 2q and abc ” 0
pmod 2q.

• If exactly two of them are even, we have a2 ` b2 ` c2 ` 2017 ” 2 pmod 4q (recalling
that squares are either congruent to 0 or 1 modulo 4) and abc ” 0 pmod 4q.

• If all three are even, we have a2 ` b2 ` c2 ` 2017 ” 1 pmod 2q and abc ” 0 pmod 2q.

In each of the four cases, we see that the two sides of the equation cannot be equal.

(b) Note that m2 ” 0 pmod 3q if m is divisible by 3 and m2 ” 1 pmod 3q otherwise, and note
also that 2016 is divisible by 3. We consider two cases:

• If none of the three numbers a, b, c is divisible by 3, then neither is abc, while on
the other hand a2 ` b2 ` c2 ` 2016 ” 1 ` 1 ` 1 ` 0 ” 0 pmod 3q. Hence we get a
contradiction.

• Otherwise, abc is divisible by 3, so a2 ` b2 ` c2 must be divisible by 3 as well. If
exactly one of the three variables is divisible by 3, we have a2` b2` c2 ” 2 pmod 3q,
and if exactly two of them are divisible by 3, we have a2 ` b2 ` c2 ” 1 pmod 3q.
In both cases, we see that there cannot be a solution. This leaves us with the only
possibility that a, b, c are all divisible by 3.

(c) We know from the previous part that we must have a “ 3x, b “ 3y, c “ 3z for certain
positive integers x, y, z. We plug these into the given equation and divide by 9 to obtain

x2
` y2

` z2
` 224 “ 3xyz.
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Note that 225 “ 152 is a perfect square, so we try to find solutions with x “ 1:

y2
` z2

` 225 “ 3yz.

Indeed, y “ z “ 15 is a solution, and we find further solutions by means of “Vieta
jumping”. Suppose that py0, z0q is a solution, i.e.,

y2
0 ` z

2
0 ` 225 “ 3y0z0,

where y0 ě z0. The second solution to the quadratic equation

z2
´ 3y0z ` p225` y2

0q “ 0

is z1 “ 3y0 ´ z0 ě 2y0 ą y0, giving us a new solution pair pz1, y0q that has a greater first
component than the previous one. Repeating the procedure, we obtain infinitely many
solutions.

Solution 2. The third part can also be solved by means of the theory of Pellian equations.
Let us return to the equation

y2
` z2

` 225 “ 3yz.

We multiply by 4 and complete the square:

4y2
´ 12yz ` 4z2

` 900 “ p2y ´ 3zq2 ´ 5z2
` 900 “ 0.

For odd k, we have
p2`

?
5qk ¨ p2´

?
5qk “ ´1.

We can write p2 `
?

5qk as u ` v
?

5 for certain positive integers u and v, so that p2 ´
?

5qk “
u´ v

?
5 and thus

u2
´ 5v2

“ ´1.

Now simply set z “ 30v and y “ 15u` 45v (so that 2y ´ 3z “ 30u) to obtain

p2y ´ 3zq2 ´ 5z2
` 900 “ 0,

as desired. Since we obtain a solution for every odd k in this way, there must be infinitely
many.
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