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MEMO 2018 Individual competition Problem statements

I-1
Let Q+ denote the set of all positive rational numbers and let α ∈ Q+. Determine all functions
f : Q+ → (α, +∞) satisfying

f
Åx + y

α

ã
= f(x) + f(y)

α
, for all x, y ∈ Q+.

I-2
The two figures depicted below consisting of 6 and 10 unit squares, respectively, are called
staircases.

Consider a 2018×2018 board consisting of 20182 cells, each being a unit square. Two arbitrary
cells were removed from the same row of the board. Prove that the rest of the board cannot
be cut (along the cell borders) into staircases (possibly rotated).

I-3
Let ABC be an acute-angled triangle with AB < AC, and let D be the foot of its altitude
from A. Let R and Q be the centroids of the triangles ABD and ACD, respectively. Let P be
a point on the line segment BC such that P ̸= D and the points P , Q, R and D are concyclic.
Prove that the lines AP , BQ and CR are concurrent.

I-4
(a) Prove that for every positive integer m there exists an integer n ≥ m such thatõn

1

û
·
õn

2

û
· · ·
õ n

m

û
=
(

n

m

)
. (∗)

(b) Denote by p(m) the smallest integer n ≥ m such that the equation (∗) holds. Prove that
p(2018) = p(2019).

Remark: For a real number x, we denote by ⌊x⌋ the largest integer not larger than x.
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MEMO 2018 Team competition Problem statements

T-1
Let a, b and c be positive real numbers satisfying abc = 1. Prove that

a2 − b2

a + bc
+ b2 − c2

b + ca
+ c2 − a2

c + ab
≤ a + b + c − 3.

T-2
Let P (x) be a polynomial of degree n ≥ 2 with rational coefficients such that P (x) has n

pairwise different real roots forming an arithmetic progression. Prove that among the roots
of P (x) there are two that are also the roots of some polynomial of degree 2 with rational
coefficients.

T-3
A group of pirates had an argument and now each of them holds some other two at gunpoint.
All the pirates are called one by one in some order. If the called pirate is still alive, he shoots
both pirates he is aiming at (some of whom might already be dead). All shots are immediately
lethal. After all the pirates have been called, it turns out that exactly 28 pirates got killed.

Prove that if the pirates were called in whatever other order, at least 10 pirates would have
been killed anyway.

T-4
Let n be a positive integer and u1, u2, . . . , un be positive integers not larger than 2k, for some
integer k ≥ 3. A representation of a non-negative integer t is a sequence of non-negative integers
a1, a2, . . . , an such that

t = a1u1 + a2u2 + · · · + anun.

Prove that if a non-negative integer t has a representation, then it also has a representation
where less than 2k of the numbers a1, a2, . . . , an are non-zero.

T-5
Let ABC be an acute-angled triangle with AB < AC, and let D be the foot of its altitude
from A. Points B′ and C ′ lie on the rays AB and AC, respectively, so that points B′, C ′ and
D are collinear and points B, C, B′ and C ′ lie on one circle with center O. Prove that if M is
the midpoint of BC and H is the orthocenter of ABC, then DHMO is a parallelogram.

5



MEMO 2018 Team competition Problem statements

T-6
Let ABC be a triangle. The internal bisector of ∠ABC intersects the side AC at L and the
circumcircle of triangle ABC again at W ̸= B. Let K be the perpendicular projection of L

onto AW . The circumcircle of triangle BLC intersects line CK again at P ̸= C. Lines BP

and AW meet at point T . Prove that AW = WT .

T-7
Let a1, a2, a3, . . . be the sequence of positive integers such that

a1 = 1 and ak+1 = a3
k + 1, for all positive integers k.

Prove that for every prime number p of the form 3ℓ+2, where ℓ is a non-negative integer, there
exists a positive integer n such that an is divisible by p.

T-8
An integer n is called Silesian if there exist positive integers a, b and c such that

n = a2 + b2 + c2

ab + bc + ca
.

(a) Prove that there are infinitely many Silesian integers.

(b) Prove that not every positive integer is Silesian.

6



MEMO 2018 Individual competition I-1
I-1
Let Q+ denote the set of all positive rational numbers and let α ∈ Q+. Determine all functions
f : Q+ → (α, +∞) satisfying

f
Åx + y

α

ã
= f(x) + f(y)

α
, for all x, y ∈ Q+.

Answer. For α = 2 the solutions of our functional equation are given by f(x) = Ax + B for
all x ∈ Q+, where either A > 0 and B ≥ 2 or A = 0 and B > 2. For α ̸= 2 there are no
solutions.

Solution. By putting x = y in the given functional equation we get f
Å2x

α

ã
= f(x) · 2

α
. It

follows that
t ∈ Im(f) ⇐⇒ t · 2

α
∈ Im(f) for all t ∈ Q+.

Therefore, if α ̸= 2 then f takes arbitrarily small values. This is a contradiction with the
assumption that f(x) > α for all x ∈ Q+. We conclude that there are no such functions for
α ̸= 2.

Assume now that α = 2. By putting x = a + b and y = a − b in the given functional equation,
where a > b > 0 are any rationals, we get

f(a + b) − f(a) = f(a) − f(a − b).

It follows that f restricted to any arithmetic sequence is linear. Since for every rational number
q there is an arithmetic sequence containing q, 1, and 2, it follows that f is linear on Q+.
Therefore f(x) = Ax + B for some reals A and B. A direct check of the condition f(x) > 2 for
all x ∈ Q+ yields that it must be that either A > 0 and B ≥ 2 or A = 0 and B > 2. Clearly,
all such functions satisfy the given equation.

7



MEMO 2018 Individual competition I-2
I-2
The two figures depicted below consisting of 6 and 10 unit squares, respectively, are called
staircases.

Consider a 2018×2018 board consisting of 20182 cells, each being a unit square. Two arbitrary
cells were removed from the same row of the board. Prove that the rest of the board cannot
be cut (along the cell borders) into staircases (possibly rotated).

Solution. Enumerate the rows of the board with integers from 1 to 2018. We color the cells
of the board in horizontal strips of width 2 as follows: rows 1 and 2 are colored red, rows 3
and 4 are colored blue, rows 5 and 6 are colored red, rows 7 and 8 are colored blue, etc. If we
disregarded the two cells removed from the board, both the number of red cells and the number
of blue cells would be divisible by 4. Since the two cells are removed from the same row, they
would have the same color, hence after the removal we have that either the number of red cells
is divisible by 4, while the number of blue cells is congruent to 2 modulo 4, or vice versa. In
both cases, the numbers of red cells and of blue cells are not congruent modulo 4.

It now remains to observe that if a staircase, either of size 6 or 10, is placed on the board, then
the difference of the numbers of red and blue cells covered by the staircase is always divisible
by 4. This follows from a straightforward case study. Hence, if the board with the two cells
removed could be tiled with staircases, then the difference of the numbers of red and blue cells
would be divisible by 4, a contradiction.

8



MEMO 2018 Individual competition I-3
I-3
Let ABC be an acute-angled triangle with AB < AC, and let D be the foot of its altitude
from A. Let R and Q be the centroids of the triangles ABD and ACD, respectively. Let P be
a point on the line segment BC such that P ̸= D and the points P , Q, R and D are concyclic.
Prove that the lines AP , BQ and CR are concurrent.

Solution 1. Without loss of generality, we may assume that P lies on the line segment CD.
Let K, L be the midpoints of the sides AB, AC, respectively. Obviously

∠CBA = ∠KDB = ∠RQP and ∠ACB = ∠CDL = ∠PRQ. (*)

Furthermore, from the fact that
DR

DK
= 2

3 = DQ

DL

we can see that RQ ∥ KL. Since BC ∥ KL we also have RQ ∥ BC. This, together with
angle equalities (*), implies that the sides PQ, QR, RP of triangle PQR are parallel to the
sides AB, BC, CA of triangle ABC, respectively. Obviously those triangles are not congruent,
which means that there exists a homothety which maps triangle PQR to ABC. The center of
this homothety is the common intersection point of the lines AP, BQ, CR.

A

B C

K
L

R Q

D P

Solution 2. The fact that triangles ABC, PQR are homothetic may be proven in a slightly
different way, as follows.

Let M be the midpoint of BC. Since the points A, D are symmetric with respect to the line
KL, it follows that

∠KML = ∠BAC = ∠KDL = ∠RPQ.

Consider a homothety h with center D and ratio DK
DR

= 3
2 = DL

DQ
. Then h maps the line segment

QR to the line segment LK. Furthermore, h maps the point P to the point P ′ lying on the
line BC such that ∠LP ′K = ∠QPR. But there are exactly two points that satisfy those

9



MEMO 2018 Individual competition I-3
conditions, namely D and M . Since P ′ ̸= D we have P ′ = M and therefore h maps triangle
PQR to MLK. Composing h and the homothety centered at the centroid of ABC with ratio
−2 which maps MLK to ABC, we obtain a homothety with negative ratio which maps PQR

to ABC.

10



MEMO 2018 Individual competition I-4
I-4

(a) Prove that for every positive integer m there exists an integer n ≥ m such thatõn

1

û
·
õn

2

û
· · ·
õ n

m

û
=
(

n

m

)
. (∗)

(b) Denote by p(m) the smallest integer n ≥ m such that the equation (∗) holds. Prove that
p(2018) = p(2019).

Remark: For a real number x, we denote by ⌊x⌋ the largest integer not larger than x.

Solution. It is clear that p(1) = 1 and p(2) = 3. From now on we assume that m ≥ 3.

First, we prove that for all positive integers n and k with 1 ≤ k ≤ n, it holds thatõn

k

û
≥ n − k + 1

k
.

Indeed, if we write n as ik + r where 0 ≤ r ≤ k − 1, thenõn

k

û
= i ≥ ik + r − (k − 1)

k
= n − k + 1

k
.

Note here that the equality holds if and only if r = k − 1, that is, n + 1 is divisible by k.

Therefore, for all n ≥ m we haveõn

1

û
·
õn

2

û
. . .
õ n

m

û
≥ n

1 · n − 1
2 · . . . · n − m + 1

m
=
(

n

m

)
.

The equality holds if and only if k divides n + 1 for all 1 ≤ k ≤ m. Since m ≥ 3, we have
lcm(1, 2, . . . , m) > m. Thus the least n that satisfies these conditions is lcm(1, 2, . . . , m) − 1.
It follows that p(m) = lcm(1, 2, . . . , m) − 1 for every integer m ≥ 3. In particular, a number n

as in statement a) always exists.

To finish the problem we need to prove that lcm(1, 2, . . . , 2018) = lcm(1, 2, . . . , 2019). But this
is clear, because 2019 = 3 · 673 | lcm(1, 2, . . . , 2018), so we are done.
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MEMO 2018 Team competition T-1
T-1
Let a, b and c be positive real numbers satisfying abc = 1. Prove that

a2 − b2

a + bc
+ b2 − c2

b + ca
+ c2 − a2

c + ab
≤ a + b + c − 3.

Solution. Note that

a2 − b2

a + bc
= a(a + bc) − abc − b2

a + bc
= a − b2 + 1

a + bc
= a − a · b2 + 1

a2 + abc
= a − a · b2 + 1

a2 + 1 .

Therefore the desired inequality can be rewritten as

a − a · b2 + 1
a2 + 1 + b − b · c2 + 1

b2 + 1 + c − c · a2 + 1
c2 + 1 ≤ a + b + c − 3,

or
3 ≤ a · b2 + 1

a2 + 1 + b · c2 + 1
b2 + 1 + c · a2 + 1

c2 + 1 .

This immediately follows from AM-GM inequality. The proof is completed.

12



MEMO 2018 Team competition T-2
T-2
Let P (x) be a polynomial of degree n ≥ 2 with rational coefficients such that P (x) has n

pairwise different real roots forming an arithmetic progression. Prove that among the roots
of P (x) there are two that are also the roots of some polynomial of degree 2 with rational
coefficients.

Solution. Let
P (x) = xn + an−1x

n−1 + . . . + a1x + a0.

Then the polynomial P has n distinct real roots r1 < r2 < . . . < rn forming an arithmetic
progression. By Viète’s formula, we have r1 + r2 + . . . + rn = −an−1. Since an−1 is rational, we
infer that µ = r1+...+rn

n
is rational as well.

Consider now polynomial Q(x) = P (x + µ). Since µ is rational, Q also has rational coefficients.
Moreover, Q has roots r′

1 < r′
2 < . . . < r′

n with r′
i = ri − µ, which also form an arithmetic

progression. We now consider two cases: either n is even or n is odd.

Case 1: n is odd. Since the mean of r′
1, r′

2, . . . , r′
n is equal to 0, we can write

(r′
1, r′

2, . . . , r′
n) =

Å
−n − 1

2 · p, −n − 3
2 · p, . . . , −p, 0, p, . . . ,

n − 3
2 · p,

n − 1
2 · p

ã
for some real p > 0. Denoting k = n−1

2 , again by Viète’s formula we infer that

an−2 =
∑

−k≤i<j≤k

(ip) · (jp) = p2 ·
∑

−k≤i<j≤k

ij.

Observe that for all 1 ≤ a < b ≤ k, summands (−a) · b, (−b) · a, (−b) · (−a) and a · b in the
sum ∑

−k≤i<j≤k ij cancel out, and the only summands that do not cancel out are of the form
(−a) · a for 1 ≤ a ≤ k. Hence ∑

−k≤i<j≤k

ij = −
∑

1≤i≤k

i2.

Since ∑1≤i≤k i2 is a positive integer, we have

p2 = −an−2∑
1≤i≤k i2 ,

hence p2 is rational.

Consider now the quadratic polynomial S(x) = (x − p)(x + p) = x2 − p2. Observe that S

has rational coefficients and both its roots are also distinct roots of Q. Hence, the polynomial
T (x) = S(x − µ) is quadratic, has rational coefficients with the leading coefficient equal to 1,
and its roots are −p + µ = rn−1

2
and p + µ = rn+3

2
.

13



MEMO 2018 Team competition T-2
Case 2: n is even. Again, this means that we can write

(r′
1, r′

2, . . . , r′
n) = (−(n − 1) · p, −(n − 3) · p, . . . , −3p, −p, p, 3p, . . . , (n − 3) · p, (n − 1) · p)

for some real p > 0. Denoting k = n
2 , by Viète’s formula we infer that

an−2 =
∑

−k<i<j≤k

(2i − 1)p · (2j − 1)p = p2 ·
∑

−k<i<j≤k

(2i − 1)(2j − 1).

A similar cancelling scheme as in Case 1 yields that

∑
−k<i<j≤k

(2i − 1)(2j − 1) = −
∑

1≤i≤k

(2i − 1)2.

Again, ∑1≤i≤k(2i − 1)2 is a positive integer, hence

p2 = −an−2∑
1≤i≤k(2i − 1)2

is a rational. We may again consider the quadratic polynomial T (x) = S(x − µ) where S(x) =
(x − p)(x + p) = x2 − p2, and conclude as in Case 1.

14



MEMO 2018 Team competition T-3
T-3
A group of pirates had an argument and now each of them holds some other two at gunpoint.
All the pirates are called one by one in some order. If the called pirate is still alive, he shoots
both pirates he is aiming at (some of whom might already be dead). All shots are immediately
lethal. After all the pirates have been called, it turns out that exactly 28 pirates got killed.

Prove that if the pirates were called in whatever other order, at least 10 pirates would have
been killed anyway.

Solution. Call a pirate mortal if someone is aiming at him in the beginning. Since some order
of shooting results in 28 pirates dead, there are at least 28 mortal pirates.

For the sake of contradiction, suppose that some order of shooting results in at most 9 dead
pirates. Then at least 19 mortal pirates survive. Each mortal pirate is pointed at by some other
pirate but the (at most) 9 dead pirates cannot point at more than 18 different pirates. Hence
there is a mortal pirate, call him Will, who is pointed at by another pirate, call him Jack, and
both Will and Jack survive till the end of the shooting. But then at some point Jack is called
and he kills Will, a contradiction.

15



MEMO 2018 Team competition T-4
T-4
Let n be a positive integer and u1, u2, . . . , un be positive integers not larger than 2k, for some
integer k ≥ 3. A representation of a non-negative integer t is a sequence of non-negative integers
a1, a2, . . . , an such that

t = a1u1 + a2u2 + · · · + anun.

Prove that if a non-negative integer t has a representation, then it also has a representation
where less than 2k of the numbers a1, a2, . . . , an are non-zero.

Solution. We shall treat a representation of t as a multiset with entries from {u1, . . . , un}
whose sum is equal to t, where integers a1, . . . , an correspond to the multiplicities of numbers
u1, . . . , un in the multiset. For a representation M , let the support of M be the subset of
those elements of {u1, . . . , un} that appear at least once in M . The problem boils down to
proving that if there is some representation of t, then there is also one with support of size less
than 2k.

Ordering numbers u1, . . . , un as in this sequence, let M be the lexicographically smallest rep-
resentation of t. We shall prove that M satisfies the claim. Suppose for contradiction that the
support of M has size at least 2k. Let S be any subset of the support of M consististing of
2k numbers and for each X ⊆ S, consider the sum of numbers in X. This sum is an integer
between 0 and 2k · 2k, for which there are 1 + 2k · 2k possibilities. On the other hand, there
are 22k different subsets of S. Since 1 + 2k · 2k < 22k for k ≥ 3 (straightforward induction), we
infer that there are two different subsets X, Y of S such that X and Y have the same sum.

Since both X and Y are subsets of S, they are also sub(multi)sets of M . Consider constructing
two multisets M ′, M ′′ from M : M ′ is obtained by subtracting Y and adding X, whereas M ′′ is
obtained by subtracting X and adding Y . Since the sums of X and Y are equal, it follows that
M ′ and M ′′ are both representations of t. However, either M ′ or M ′′ is lexicographically smaller
than M , depending on whether X is lexicographically smaller than Y . This is a contradiction
with the choice of M .

16



MEMO 2018 Team competition T-5
T-5
Let ABC be an acute-angled triangle with AB < AC, and let D be the foot of its altitude
from A. Points B′ and C ′ lie on the rays AB and AC, respectively, so that points B′, C ′ and
D are collinear and points B, C, B′ and C ′ lie on one circle with center O. Prove that if M is
the midpoint of BC and H is the orthocenter of ABC, then DHMO is a parallelogram.

Solution 1. Without loss of generality assume that AB < AC. Let H ′, H ′′ be the points
symmetric to H with respect to BC and with respect to M , respectively. It is well-known
that H ′, H ′′ both lie on the circumcircle of ABC; furthermore, AH ′′ is the diameter of this
circumcircle. Since DH ∥ MO (they are both perpendicular to BC), it suffices to prove
that MO = DH. We will prove that O is the midpoint of H ′H ′′ which leads easily to the
conclusion.

Since ∠BH ′A = ∠BCA = ∠BB′D, we see that the points B, B′, H ′, D are concyclic. Therefore
∠H ′B′B = 180◦ − ∠BDH ′ = 90◦ and we find that BB′H ′H ′′ is a right-angled trapezoid. It
follows that the midpoint P of H ′H ′′ lies on the perpendicular bisector of BB′. Analogously we
can prove that P lies on the perpendicular bisector of CC ′. However, BB′ and CC ′ are chords
of a circle with center O, which means that the intersection of their perpendicular bisectors is
O. This implies that O = P and finishes the proof.

A

B C

B′

C ′

H

H ′ H ′′

M
D

O = P

Solution 2. As in the first solution we introduce the point H ′ and we observe that it lies on
the circumcenter of ABC. By the power of point theorem we get

DA · DH ′ = DB · DC = DB′ · DC ′

17



MEMO 2018 Team competition T-5
and therefore B′, H ′, C ′, A are concyclic. We conclude that

∠AH ′C ′ = ∠AB′C ′ = ∠BCA.

Thus
∠BH ′C ′ = ∠BH ′A + ∠AH ′C ′ = 2∠BCA = ∠BOC ′

which leads us to the conclusion that B, H ′, O, C ′ are concyclic. Since the triangle BOC ′ is
isosceles, ∠C ′BO = 90◦ − 1

2∠BOC ′ = 90◦ − ∠BCA and therefore

∠DH ′O = ∠AH ′C ′ + ∠C ′H ′O = ∠BCA + ∠C ′BO = ∠BCA + 90◦ − ∠BCA = 90◦.

From AD ⊥ BC and OM ⊥ BC we deduce that DMOH ′ is a rectangle which implies that
OM = H ′D = DH. Together with the fact that lines DH, MO are parallel (they are both
perpendicular to BC), this leads us to the final conclusion.

A

B C

B′

C ′

H

H ′

M
D

O

18



MEMO 2018 Team competition T-6
T-6
Let ABC be a triangle. The internal bisector of ∠ABC intersects the side AC at L and the
circumcircle of triangle ABC again at W ̸= B. Let K be the perpendicular projection of L

onto AW . The circumcircle of triangle BLC intersects line CK again at P ̸= C. Lines BP

and AW meet at point T . Prove that AW = WT .

Solution 1. Note that

∠BPC = ∠BLC = ∠BAC + ∠CBA

2 = ∠BAW.

Therefore, ABPK is cyclic.

Let KL intersect the circumcircle of triangle BLC at a point S ̸= L. Then

∠KSC = ∠LSC = ∠LBC = ∠WBC = ∠WAC = ∠KAC.

So KASC is cyclic.

Now, radical axes of circles KABP, BPCS, KASC are concurrent. That is: AK, BP, CS

concur and so CS passes through T . Note that ∠SCA = ∠SKA = 90◦, so ∠TCA = 90◦. As
AW = WC, we find that W is the circumcenter of the (right) triangle ACT , so AW = WT .

A

B C

K

L
P

S

T

W
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Solution 2. Let T ′ be the point on the ray AW such that AW = WT ′. We will show that
T ′ = T .

As WA = WC = WT ′, C lies on the circle with diameter AT ′, so ∠ACT ′ = 90◦ = ∠LKT ′. It
follows that KLCT ′ is cyclic.

Note that ∠ALW = ∠BLC = ∠BAC + ∠CBA
2 = ∠BAW . Therefore, triangles AWL and

BWA are similar. It follows that WA2 = WL · WB. So WT ′2 = WL · WB, and triangles
T ′WL and BWT ′ are similar.

Now, let BT ′ intersect KC at P ′. We will show that P ′ = P , from which we will get T ′ = T .
Note that from △T ′WL ∼ △BWT ′ we get ∠LT ′W = ∠LBT ′ = ∠LBP ′. As KLCT ′ is cyclic,
∠LT ′W = ∠LT ′K = ∠LCK = ∠LCP ′. Combining, we get ∠LCP ′ = LBP ′, meaning that
LBCP ′ is cyclic. As LBCP is cyclic, P ′ = P , as desired.

A

B C

K

L
P ′

T ′

W
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T-7
Let a1, a2, a3, . . . be the sequence of positive integers such that

a1 = 1 and ak+1 = a3
k + 1, for all positive integers k.

Prove that for every prime number p of the form 3ℓ+2, where ℓ is a non-negative integer, there
exists a positive integer n such that an is divisible by p.

Solution. Let f(x) = x3 + 1. In what follows all congruences are considered modulo p.

We will prove that if f(a) ≡ f(b) for some integers a and b, then a ≡ b. This is clear when
f(a) ≡ 1, because then a ≡ b ≡ 0. Otherwise a ̸≡ 0 ̸≡ b. By Fermat’s little theorem, we have
a3k+1 ≡ 1 ≡ b3k+1 and hence

f(a) ≡ f(b) =⇒ a3 ≡ b3 =⇒ (a3)2k+1 ≡ (b3)2k+1 =⇒ a · (a3k+1)2 ≡ b · (b3k+1)2 =⇒ a ≡ b.

The above observation implies that f considered as a map from Fp to Fp is an injection, and
therefore it is a permutation, because Fp is finite. Let ℓ be the length of the cycle of this
permutation that contains 1. Then

f(f ℓ−1(1)) ≡ f ℓ(1) ≡ 1 ≡ f(0).

Since f is injective, it follows that f ℓ−1(1) ≡ 0. Therefore n = ℓ − 1 is as required.

Comment. The fact that f is a permutation on Fp for p of the form 3k + 2 can be also proved
as follows. We have

f(a) − f(b) = (a − b)(a2 + ab + b2) = (a − b)b2((ab−1)2 + (ab−1) + 1).

Therefore, to prove that f(a) ≡ f(b) entails a ≡ b it suffices to show that the polynomial
t2 + t + 1 has no roots in Fp. The discriminant of this polynomial is −3 and one can readily
verify using Legendre’s symbol that −3 is not a quadratic residue modulo p if and only if p is
of the form 3k + 2 for an integer k.
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T-8
An integer n is called Silesian if there exist positive integers a, b and c such that

n = a2 + b2 + c2

ab + bc + ca
.

(a) Prove that there are infinitely many Silesian integers.

(b) Prove that not every positive integer is Silesian.

Solution 1. to a) First, we try to find k such that k = a2 + b2 + c2

ab + bc + ca
for some (not necessarily

positive) integers a, b, c. In order to reduce the number of variables, we look for solutions
satisfying a + b = 1. Substituting b = 1 − a we find

k = 2a2 − 2a + 1 + c2

c + a(1 − a) = (c + 1)2

c + a(1 − a) − 2.

We take c = 1 − a(1 − a) = a2 − a + 1 so that the denominator is equal to 1. This forces
k = (c + 1)2 − 2 = (a2 − a + 2)2 − 2.

It follows that if c = a2 − a + 1 and k = (a2 − a + 2)2 − 2 then b1 = 1 − a is a root of the
following quadratic equation in variable b:

a2 + b2 + c2 = k(ab + bc + ca).

The other root is, by Viète’s formula, b2 = k(a + c) − b1 = k(a + c) + a − 1.

It is clear that for every integer a > 0 one has c = a2 − a + 1 > 0, k = (a2 − a + 2)2 − 2 > 0,
and b = k(a + c) + a − 1 > 0. These numbers satisfy

a2 + b2 + c2

ab + bc + ca
= k

and witness that k = (a2 − a + 2)2 − 2 ∈ S for every positive integer a.

Solution 2. to a) To prove that k ∈ S we have to find positive integers a, b, c satisfying

k · (ab + bc + ca) = a2 + b2 + c2 (∗)
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Set a = k · (b + c) + x for some positive integer x. Then the above becomes equivalent to:

k · ((k · (b + c) + x) · (b + c) + bc) = (k · (b + c) + x)2 + b2 + c2

k2 · (b + c)2 + kx · (b + c) + kbc = k2 · (b + c)2 + 2kx · (b + c) + x2 + b2 + c2

kbc − kx · (b + c) = x2 + b2 + c2

k · (bc − bx − cx) = x2 + b2 + c2

This can be trivially satisfied, if we find positive integers b, c, x with bc − bx − cx = 1. Or
equivalently:

b = cx + 1
c − x

This shows that for any positive integer x the following integers satisfy (∗):

c = x + 1
b = cx + 1 = x2 + x + 1
k = x2 + b2 + c2 = x4 + 2x3 + 5x2 + 4x + 2
a = k(b + c) + x = x6 + 4x5 + 11x4 + 18x3 + 20x2 + 13x + 4

In particular, any integer of the form x4 + 2x3 + 5x2 + 4x + 2 is an element of S. As this grows
strictly monotonically with x, we get infinitely many possible positive integer values in S.

Solution 3. to a) Let m be an odd positive number and let a = Fm, b = Fm+1, where Fi

denotes the i-th Fibonacci number. Moreover, let

c = (a2 + ab + b2)2 − ab

a + b
= a3 + a2b + ab2 + b3 + ab · ab − 1

a + b
.

In order to prove that c is an integer we will first prove the following identity:

F 2
k+1 − F 2

k = FkFk+1 + (−1)k

for all integers k ≥ 1. Recall that Fi = ξi−ηi

ξ−η
, where ξ and η are the roots of the quadratic

polynomial t2 − t − 1. Then ξη = −1. Therefore

F 2
k+1 − F 2

k − FkFk+1 = Fk+1(Fk+1 − Fk) − F 2
k = Fk+1Fk−1 − F 2

k

= ξk+1 − ηk+1

ξ − η
· ξk−1 − ηk−1

ξ − η
−
(

ξk − ηk

ξ − η

)2

= ξ2k + η2k − ξk+1ηk−1 − ξk−1ηk+1 − (ξ2k + η2k − 2ξkηk)
(ξ − η)2

= −ξk−1ηk−1(ξ2 + η2 − 2ξη)
(ξ − η)2 = (−1)k(ξ − η)2

(ξ − η)2 = (−1)k.
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Since m is odd we have

(b − a)(b + a) = b2 − a2 = ab − 1,

therefore a + b | ab − 1 which means that c is indeed an integer.

Now, observe that
ab + bc + ca = ab + c(a + b) = (a2 + ab + b2)2.

As a consequence,

(a2 + b2 + c2)(a + b)2 = (a2 + b2)(a + b)2 + (c(a + b))2 ≡ (a2 + b2)2 + 2(a2 + b2) · ab + (ab)2

= (a2 + ab + b2)2 ≡ 0 (mod ab + bc + ca).

But since gcd(a, b) = gcd(Fm, Fm+1) = 1, then also

gcd(a + b, ab + bc + ca) = gcd(a + b, ab) = 1.

Therefore we obtain that a2+b2+c2

ab+bc+ca
is an integer.

To end the proof it suffices to show that a2+b2+c2

ab+bc+ca
can be arbitrarily large, depending on the

choice of m. But
a2 + b2 + c2 ≥ c2 ≥ b6 and

ab + bc + ca = (a2 + ab + b2)2 ≤ 9b4,

which means that a2+b2+c2

ab+bc+ca
≥ b2

9 . Since b = Fm+1 can be arbitrarily large, the conclusion follows.

Solution 1. to b) We will show that 4 /∈ S. It is enough to prove that the equation

a2 + b2 + c2 = 4(ab + bc + ca)

has no solutions in positive integers. Since squares of integers may be congruent only to 0 or
1 modulo 4, while the right hand side is divisible by 4, we have a2 ≡ b2 ≡ c2 ≡ 0 (mod 4).
Therefore a = 2a1, b = 2b1, c = 2c1 for some positive integers a1, b1, c1. Then

a2
1 + b2

1 + c2
1 = 4(a1b1 + b1c1 + c1a1).

By continuing this process we see that a, b, c are divisible by 2k for every positive integer k,
which is a contradiction.

Comment. One can prove in a similar way that 4n /∈ S for every integer n.
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Solution 2. to b) We will prove that 3 /∈ S. We have to show that there are no positive
integers a, b, c satisfying

a2 + b2 + c2 = 3(ab + bc + ca).

Suppose the contrary and let a, b, c be a solution to the above that minimizes a + b + c. Then
at least one of a, b, c is odd because otherwise a/2, b/2, c/2 is a solution with a smaller sum
of variables.

We rewrite the equation in the following form:

(a + b)2 + (b + c)2 + (c + a)2 = 8(ab + bc + ca).

Since squares of integers may be congruent only to 0 or 1 modulo 4, we see that (a + b)2 ≡
(b + c)2 ≡ (c + a)2 (mod 4). It follows that a, b, c have the same parity. Since one of a, b, c

is odd, actually all of them are odd. Write a = 2k + 1, b = 2l + 1, c = 2m + 1. Substituting
this to the original equation yields

4(k2 + k + l2 + l + m2 + m) + 3 = 12(kl + lm + mk + k + l + m) + 9.

It follows that 3 ≡ 9 (mod 4) which is absurd. Therefore, there are no positive integers a, b, c

satisfying a2 + b2 + c2 = 3(ab + bc + ca).

Comment. One can prove in a similar way that 4n + 3 /∈ S for every integer n.

Solution 3. to b) Before we start the actual proof, let us give some preparatory statements.
First, we may assume without loss of generality that gcd(a, b, c) = 1, as otherwise we can
simply divide all of a, b, c by gcd(a, b, c). Next, we claim that gcd(a, b) = 1. Otherwise, the
denominator would be divisible by gcd(a, b), so the numerator would have to be divisible by
gcd(a, b) as well, which would entail gcd(a, b) | c. But this contradicts gcd(a, b, c) = 1.

We now move to the main problem: we claim that 3 /∈ S. In other words, we have to prove
that the equation

a2 + b2 + c2 = 3ab + 3bc + 3ca

has no solutions in positive integers. Regrouping the terms yields

c2 − (3a + 3b)c + a2 − 3ab + b2 = 0

which we now consider as a quadratic equation in c. For c to be an integer, it is necessary that
the discriminant, written below, is a perfect square:

∆ = 9(a + b)2 − 4(a2 − 3ab + b2) = 5(a2 + 6ab + b2).
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This implies that a2 + 6ab + b2 = (a + 3b)2 − 8b2 is divisible by 5. However, (a + 3b)2 may be
congruent only to 0, 1, or 4 modulo 5, whereas 8b2 may be congruent only to 0, 2, or 3 modulo
5, so their difference can only be divisible by 5 only if b ≡ 0 (mod 5) and a + 3b ≡ 0 (mod 5).
This however implies 5 | gcd(a, b) = 1, which is a contradiction.

Comment. That 4 /∈ S can be proved in a very similar fashion.

Comment. A (non-exhaustive) computer search found the following integer values smaller than
200 in S:

1, 2, 5, 10, 14, 17, 26, 29, 37, 50, 62, 65, 74, 77, 82, 98, 101, 109, 110,

122, 125, 145, 149, 170, 173, 190, 194, 197

Comment. There are several other families of solutions that can be used for part a). Probably
the simplest (though maybe not to find...) is

a = x + 1
b = x2 + 1
c = x4 + x3 + 3x2 + 2x + 1
n = x2 + 1.
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