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to Individual Competition Problems

Problem I-1
Determine all functions f : R → R such that

f
(
xf(y) + 2y

)
= f(xy) + xf(y) + f

(
f(y)

)
holds for all real numbers x and y.

(proposed by Patrik Bak, Slovakia)

Answer. The functional equation has two solutions, f(x) ≡ 0 and f(x) ≡ 2x.

Solution. Setting x = 0 and y = 0 in the functional equation yields f (f(0)) = 0. So there is
at least one zero point of f . Let a be any of them. Setting y = a gives us f(2a) = f(ax)+f(0).
If a ̸= 0, then f is a constant function and we know that f(a) = 0, so it is a zero function,
which is indeed a solution.

It remains to investigate the case where 0 is the only zero point of f , i.e. f(a) = 0 if and only
if a = 0. Furthermore, taking x = 0 in the functional equation we obtain

f(2y) = f
(
f(y)

)
. (1)

If we prove an injectivity of f , the previous identity yields f(y) = 2y, what is the second
solution, as we can easily check.

Now we prove the injectivity of f . Firstly, let us examine the set of the fixed points of f . This
set is non-empty because 0 is one of its points. Assume that p is any of the fixed points, i.e.
f(p) = p. Setting x = −1, y = p in the functional equation gives

p = f
(
−f(p) + 2p

)
= f(−p) − f(p) + f

(
f(p)

)
= f(−p).



Now we set x = 1, y = −p in the functional equation and we obtain using proved f(−p) = p

p = f
(
f(−p) − 2p

)
= f(−p) + f(−p) + f

(
f(−p)

)
= 3p.

This yields that p = 0 is the only fixed point of f .

Secondly, we choose x so that xf(y) + 2y = xy, which yields x = 2y/
(
y − f(y)

)
. This can be

done for each y ̸= 0, since 0 is the only fixed point of f . This substitution gives us

f
(
f(y)

)
= 2yf(y)

f(y) − y
= 2f 2(y)

f(y) − y
− 2f(y).

In order to finish the proof of injectivity let us assume that non-zero real numbers a, b satisfy
f(a) = f(b). We have already proved that f(a) = f(b) ̸= 0. The previous identity yields

2f 2(a)
f(a) − a

− 2f(a) = f
(
f(a)

)
= f

(
f(b)

)
= 2f 2(b)

f(b) − b
− 2f(b)

and it follows that a = b. The proof of the injectivity is thereby finished.

Remark. We present an alternative way of proving that f(p) = p implies p = 0.

Assume that f(p) = p. Then y = p in (1) means f(2p) = p and afterwards y = 2p means
f(4p) = p. Taking x = 2 and y = p in the original equation then gives us p = 0, which works.
Therefore the only fixed point of f is 0.

Solution by Jozef Fülöp awarded by prize of the dean of the FMF, Charles Univerzity, Prague.

We set x = 1, y = 0 in the original equation and we obtain

f
(
f(0)

)
= f(0) + f(0) + f

(
f(0)

)
which implies f(0) = 0. This identity yields after setting x = 0 in the original equation

f(2y) = f
(
f(y)

)
. (2)

Let us assume that there exists t0 ̸= 0 such that f(t0) = 0. For every real number t we obtain
by substitution x = t/t0, y = t0 in the original equation

f(2t0) = f(t) + t

t0
· f(t0) + f

(
f(y)

)
= f(t) + f

(
f(t0)

)
.

This equation with (2) gives us f(t) = 0 for each real number t, which is one of the solutions,
as we can easily check.

Now we can assume that f(y) ̸= 0 for every real number y ̸= 0. For each real number t and
y ̸= 0 we obtain by putting x = 2t/f(y) in the original equation

f(2t + 2y) = f

(
2ty

f(y)

)
+ 2t + f

(
f(y)

)
.
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We prove that the function f is injective. If a, b are numbers from R \ {0} such that f(a) =
f(b) (̸= 0) then the substitutions t = a, y = b or t = b, y = a in the previous equation gives

f(2a + 2b) = f

(
2ab

f(b)

)
+ 2a + f

(
f(b)

)
,

f(2b + 2a) = f

(
2ba

f(a)

)
+ 2b + f

(
f(a)

)
.

This two equations directly yields to a = b, which proves the injectivity.

The injectivity of the function f together with (2) lead to f(y) = 2y what is the second solution,
as we can check.

Problem I-2
Let n ≥ 3 be an integer. We say that a vertex Ai (1 ≤ i ≤ n) of a convex polygon A1A2 . . . An is
Bohemian if its reflection with respect to the midpoint of the segment Ai−1Ai+1 (with A0 = An

and An+1 = A1) lies inside or on the boundary of the polygon A1A2 . . . An. Determine the
smallest possible number of Bohemian vertices a convex n-gon can have (depending on n).

(A convex polygon A1A2 . . . An has n vertices with all inner angles smaller than 180◦.)

(proposed by Dominik Burek, Poland)

Answer. n − 3.

In the following we write for short ‘reflection of A in P ’ instead of ‘reflection of the vertex A
with respect to the midpoint of the segment connecting the two neigbouring vertices of A in
the polygon P ’.

Solution.

Lemma. If ABCD is a convex quadrilateral with ∠BAD+∠CBA ≥ π and ∠BAD+∠ADC ≥
π then A is a Bohemian vertex of ABCD.

Proof. Let E be the reflection of A in ABCD. It is clearly seen that E belongs to the halfplanes
containing C determined by lines AB and AD. Since ∠BAD + ∠CBA ≥ π and ∠BAD +
∠EBA = π, point E belongs to the (closed) halfplane containing points A, D determined by
the line BC. Analogously, using the assumption ∠BAD + ∠ADC we infer that E belongs to
the closed halfplane containing points A, B determined by the line CD.

A D

B E

C
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Therefore E lies inside or on the boundary of ABCD. Thus A is Bohemian.

Consider a convex n-gon A1A2 . . . An. Choose any four vertices Ai, Aj, Ak, Al with i < j < k < l
as in the picture below. Consider quadrilateral AiAjAkAl. It is clear that one of the points
Ai, Aj, Ak, Al satisfies assumption of the lemma, let’s say this point is Ai. We claim that Ai

satisfies the assumption of the lemma in quadrilateral Ai−1AiAi+1Ak. Observe that the point
X := AkAi+1 ∩ AiAi−1 lies in the triangle bounded by lines AkAj, AjAi and AiAl. So

∠AkAi+1Ai + ∠Ai+1AiAi−1 = π + ∠AkXAi ≥ π.

(Note: it may happen that X does not exist. It happens iff j = i+1, l = i−1 and AkAj ∥ AlAi.
In that case ∠AkAi+1Ai + ∠Ai+1AiAi−1 = π.)

Analogously ∠Ai+1AiAi−1 +∠AiAi−1Ak ≥ π. Using lemma we conclude that Ai is a Bohemian
vertex of quadrilateral Ai−1AiAi+1Ak. This implies that Ai is a Bohemian vertex of A1A2 . . . An

since the quadrilateral Ai−1AiAi+1Ak is a subset of the n-gon and the reflexion point is the
same.

X

Ai

Ai+1Aj

Ai−1

Ak Al

Therefore, amongst any four vertices of a convex n-gon there exists a Bohemian vertex. So,
every n-gon has at least n − 3 Bohemian vertices.

An example of a convex n-gon with exactly n − 3 Bohemian vertices is the following: take any
kite A1A2A3A4 with A4A1 = A1A2 < A2A3 = A3A4 and place points A5, . . . , An very close to
A1. Then A2, A3, A4 are not Bohemian vertices of A1A2 . . . An.

Solution 2. We present a sketch of an alternative proof of the fact that the every n-gon has
at least n − 3 Bohemian vertices.

Observation 1. Let us place the polygon into a coordinate system in such a way that A1 = [0, 0],
A2 = [a, 0], a > 0 and the second coordinates of all the remaining vertices are positive. If all
the remaining vertices A2, . . . , An have their first coordinates between 0 and a (see picture
below), it is easy to see that the only vertices that could be non-Bohemian are A1, A2, and the
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point with the strictly largest second coordinate (if such a vertex exists). So, in this case, there
exist at least n − 3 Bohemian vertices.

A1 A2

Ai

A′
i

Ai

Aj

pi pj

Observation 2. An affine transformation does not change anything, so the statement is proved
for all polygons that lie between two parallel lines that go through two adjacent vertices, i.e.,
whenever there are two adjacent vertices with sum of their angles at most 180◦.

Consider now any polygon P = A1A2, . . . An.

Observation 3. If there are two (non-adjacent) vertices Ai, Aj and two parallel lines pi, pj with
Ai ∈ pi, Aj ∈ pj such that the whole polygon lies between pi and pj, then the diagonal AiAj

splits P into two polygons of the type considered in Observation 2. By Observations 1 and 2,
these two polygons have at most 4 non-Bohemian points together, Ai, Aj, and two more.

Observation 4. For any vertex Ai there exist a vertex Aj and two parallel lines pi and pj with
Ai ∈ pi, Aj ∈ pj such that the whole polygon lies between them. In fact, take a line pi such
that pi ∩ P = {Ai}, then Aj is the vertex with maximal distance from pi, if there are two such
vertices, change the direction of pi slightly to obtain a unique Aj.

Let n = 4. Then there exist two adjacent vertices with sum of their angles not larger than
180◦, so, by Observation 2, any quadrilateral has at most 3 non-Bohemian vertices.

Let n ≥ 5. By Observations 3 and 4, there exist at most 4 non-Bohemian vertices. So, at
least one vertex is Bohemian, denote it by Ai. Then, by Observations 3 and 4, all the non-
Bohemian vertices are contained in the quadruple Ai, Aj and some other two vertices. Since
Ai is Bohemian, there are at most three non-Bohemian vertices and the proof is complete.

Solution 3. We prove by induction that every n-gon has at least n − 3 Bohemian vertices.

Step 1, n = 4. We show that every quadrilateral ABCD has at least one Bohemian vertex.
We consider a triangle ABC. Then D has to be in one of the areas P1, P2, P3, P4 (see picture
below), otherwise, ABCD would not be a convex quadrilateral. If D were in P2, then B would
be Bohemian. If D were in P3, it would be Bohemian. If D were in P1, then A would be
Bohemian and similarly if D were in P4, then C would be Bohemian (the last two cases are not
immediate but easy to prove).
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P1
P2

P3
P4

A

CB

Induction step. Consider an n-gon P = A1A2 . . . An with n ≥ 5. Let P ′ be an (n − 1)-gon
obtained from P by omitting one vertex different from A1. Let A′

1 be the reflexion of A1 in P
and A′′

1 the reflexion of A1 in P ′. We show the following statement

if A1 is non-Bohemian in P , then it is non-Bohemian also in P ′. (S)

This statment is obvious if the omitted vertex is not adjacent to A1 (since in this case A′
1 = A′′

1
and P ′ ⊂ P ). So, let the omitted vertex be An (the other neighbour A2 can be done in the same
way) and let us assume for contradiction that A′

1 ̸∈ P and A′′
1 ∈ P ′. Let us observe that vectors

AnAn−1 and A′
1A

′′
1 are equal. Let us discuss the possible position of An−1. If An−1 ∈ Q3 ∪ Q4

(as in the picture below) then A′′
1 lies below the line AnAn−1 while the whole polygon P lies

above this line, contradiction with A′′
1 ∈ P ′ ⊂ P . If An−1 ∈ Q2, then A′

1 ∈ △A2AnAn−1 ⊂ P ,
contradiction. If An−1 ∈ Q1, then the new reflexion A′′

1 ∈ Q2 and A′
1 ∈ △A2AnA′′

1 and
△A2AnA′′

1 ⊂ P ′ since A′′
1 ∈ P ′. Therefore A′

1 ∈ P ′ ⊂ P , contradiction. Statement (S) is
proved.

A1

A2

An−1
Q3

Q4

Q2

A′
1

A′′
1

An

Q1

Since (by the induction hypothesis) there are at most 3 non-Bohemian vertices in P ′, there are
at most 4 non-Bohemian vertices in P (the three and the omitted one). Since n ≥ 5 there is
at least one Bohemian vertex in P . Assume now that P ′ is obtained form P by omitting a
Bohemian vertex. Since there are at most 3 non-Bohemian vertices in P ′, there are at most 3
non-Bohemian vertices in P and the proof is complete.

Problem I-3
Let ABC be an acute-angled triangle with AC > BC and circumcircle ω. Suppose that P is
a point on ω such that AP = AC and that P is an interior point of the shorter arc BC of ω.
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Let Q be the point of intersection of the lines AP and BC. Furthermore, suppose that R is
a point on ω such that QA = QR and that R is an interior point of the shorter arc AC of ω.
Finally, let S be the point of intersection of the line BC with the perpendicular bisector of the
side AB. Prove that the points P , Q, R, and S are concyclic.

(proposed by Patrik Bak, Slovakia)

Solution. Let ud denote O the center of the circle ω and ϕ = ∠PAR. Since the triangle QAR
is isosceles, we have ∠ARQ = ϕ and ∠PQR = 2ϕ. The central angle theorem (applying to the
chord PR) also yields ∠POR = 2ϕ. Thus the points P , Q, O and R are concyclic.

A B

C

O
P

R

Q

S

Further, let us denote β = ∠ABC. Since AP = AC, we have ∠ACP = ∠APC = β and thus
(by the central angle theorem) ∠AOP = 2β, which gives

∠PAO = ∠APO = 90◦ − β = ∠OPQ.

Since ∠ABS = β, we furthermore have ∠OSB = ∠OSQ = 90◦ − β, which concludes ∠OPQ =
∠OSB and therefore also the points P , Q, O and S are concyclic.

From both paragraphs above it immediately follows the requested claim, i.e. the points P , Q,
R, S are concyclic, and the proof is done.

Problem I-4
Determine the smallest positive integer n for which the following statement holds true: From
any n consecutive integers one can select a non-empty set of consecutive integers such that
their sum is divisible by 2019.

(proposed by Kartal Nagy, Hungary)

Answer. n = 340.
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Solution The prime factorization of 2019 is 3 · 673. Let p = 673.

For each integer k, color the three numbers kp − 1, kp, kp + 1 red, and and the six numbers
kp + p−5

2 , kp + p−3
2 , kp + p−1

2 , kp + p+1
2 , kp + p+3

2 , kp + p+5
2 blue. Now the integers are colored

periodically. In a period of length p = 673, there are 3 red integers, then 332 uncolored integers,
then 6 blue integers and finally 332 uncolored integers.

The sum of the integers in a red interval is 3kp = 2019 · k, and the sum of the integers in a blue
interval is 6(kp + p

2) = 2019 · (2k + 1). So if there is a colored interval (we mean a maximal one
throughout) in the given n consecutive integers, one can choose it. It is easy to see, that among
any 340 = 332 + (6 − 1) + (3 − 1) + 1 consecutive integers, there must be a colored interval.
Thus the smallest n (that we look for) satisfies n ≤ 340.

Now we will show that it is not possible to choose consecutive integers in the desired way from
the set A = {335, 336, . . . , 673}. (|A| = 339 and thus n ≥ 340.) Assume that there exists
{a, a + 1, . . . b} ⊆ A such that

2019 | a + (a + 1) + · · · + b = (b − a + 1)(a + b)
2 .

That means either 673 | b − a + 1, or 673 | a + b. Since

0 < 1 ≤ b − a + 1 ≤ 339 < 673,

673 must divide a + b. Taking into account that

671 = 335 + 336 ≤ a + b ≤ 673 + 673 = 2 · 673,

we conclude that a + b must be 673 or 2 · 673. It means either a = 335 and b = 338, or a = 336
and b = 337, or a = b = 673. But 2019 - 335 + 336 + 337 + 338 = 1346, 2019 - 336 + 337 = 673
and 2019 - 673, a contradiction.
Comment. The same proof works for every odd number m = p · q, where p is a ‘big’ prime
divisor of m. We need that p >

√
3m. Then the answer is n = p+3q

2 − 1.
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to Team Competition Problems

Problem T-1
Determine the smallest and the greatest possible values of the expression

( 1
a2 + 1 + 1

b2 + 1 + 1
c2 + 1

)(
a2

a2 + 1 + b2

b2 + 1 + c2

c2 + 1

)

provided a, b, and c are non-negative real numbers satisfying ab + bc + ca = 1.

(proposed by Walther Janous, Austria)

Answer. The smallest value is 27
16 and the greatest is 2.

Solution. Let us denote

x = a2

a2 + 1 + b2

b2 + 1 + c2

c2 + 1 , y = 2abc

(a + b)(b + c)(c + a)

to simplify notation.

Denominators in x can be manipulated using ab + bc + ca = 1 as

a2 + 1 = a2 + ab + bc + ca = (a + b)(a + c)

and similarly for b2 + 1 and c2 + 1. This yields a relation between x and y

x = a2(b + c) + b2(c + a) + c2(a + b)
(a + b)(b + c)(c + a) = 1 − 2abc

(a + b)(b + c)(c + a) = 1 − y.

Using
1

a2 + 1 = 1 − a2

a2 + 1



and similar relations for b and c we have( 1
a2 + 1 + 1

b2 + 1 + 1
b2 + 1

)(
a2

a2 + 1 + b2

b2 + 1 + c2

c2 + 1

)
= (3 − x)x.

Since (3 − x)x = (2 + y)(1 − y) = 2 − y − y2, we want to estimate y. Obviously y ≥ 0 with
equality e.g. for (a, b, c) = (0, 1, 1). On the other hand y ≤ 1

4 as can be seen after multiplying
three AM-GM inequalities

a + b ≥ 2
√

ab, b + c ≥ 2
√

bc, c + a ≥ 2
√

ca.

The equality is reached for a = b = c =
√

1
3 .

Finally we compute
27
16 = 2 − 1

4 − 1
16 ≤ 2 − y − y2 ≤ 2.

Similar solution. Let us denote

x = 1
a2 + 1 + 1

b2 + 1 + 1
c2 + 1 .

Since
a2

a2 + 1 = 1 − 1
a2 + 1

holds we have( 1
a2 + 1 + 1

b2 + 1 + 1
c2 + 1

)(
a2

a2 + 1 + b2

b2 + 1 + c2

c2 + 1

)
= x(3 − x) = 9

4 −
(

x − 3
2

)2
.

To obtain the extrema it is sufficient to find the bounds of x.

The sum a + b + c is non-negative because a, b, c ≥ 0. If a + b + c = 0 then a = b = c = 0 what
is in contradiction with ab + bc + ca = 1, so a + b + c > 0. Using ab + bc + ca = 1 we obtain

1
a2 + 1 = 1

a2 + ab + bc + ca
= 1

(a + b)(a + c)

and similarly for 1/(b2 + 1) and 1/(c2 + 1). This yields

x = 2(a + b + c)
(a + b)(b + c)(c + a) = 2(a + b + c)

(a + b + c)(ab + bc + ca) − abc
= 2

1 − abc
a+b+c

and the problem is reduced to find bounds of abc/(a + b + c). We have obviously

0 ≤ abc

a + b + c
.

The equality holds there if one of a, b, c is equal 0 and the product of remaining two is 1. On
the other hand using AM-GM inequality we have

a + b + c = (a + b + c)(ab + bc + ca) ≥ 3 (abc) 1
3 · 3 (abc) 2

3 = 9abc
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with equality in the case a = b = c =
√

3
3 . So

abc

a + b + c
≤ 1

9 .

These inequalities give us the bounds for x

2 ≤ x = 2
1 − abc

a+b+c

≤ 9
4 .

This follows
27
16 ≤ 9

4 −
(

x − 3
2

)2
≤ 2.

The lower bound arises if one of a, b, c is zero and product of the others is 1, the upper bound
arises if a = b = c =

√
3

3 .

Problem T-2
Let α be a real number. Determine all polynomials P with real coefficients such that

P (2x + α) ≤ (x20 + x19) P (x)

holds for all real numbers x.

(proposed by Walther Janous, Austria)

Answer. For all α the only satisfying polynomial is P (x) ≡ 0.

Solution. Zero polynomial obviously satisfies the problem. Further, let us suppose that poly-
nomial P is non-zero. Let n be its degree and an ̸= 0 be its coefficient at xn. Polynomial
(x20 + x19)P (x) − P (2x + α) has degree n + 20, coefficient an at xn+20 and it is non-negative
for all real numbers x. It follows that n + 20 (and n too) is an even number and an > 0.

For x = −1 and x = 0 we obtain

P (−2 + α) ≤ 0 and P (α) ≤ 0.

So P has real roots. Let m be its minimal real root and M the maximal real root. Since an > 0
the values P (x) are positive outside the interval ⟨m, M⟩. It yields {−2 + α, α} ⊂ ⟨m, M⟩, the
interval ⟨m, M⟩ is so proper (non-degenerate) and it has the length at least 2.

For x = m we have
P (2m + α) ≤ 0.

This implies m ≤ 2m + α and therefore −α ≤ m. Analogously for x = M we obtain

P (2M + α) ≤ 0.
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This yields 2M + α ≤ M and M ≤ −α. It follows altogether m = M = −α, which contradicts
the fact that ⟨m, M⟩ is the proper interval. This finally proves that non-zero polynomial P
satisfying the problem does not exist.

Problem T-3
There are n boys and n girls in a school class, where n is a positive integer. The heights of all
the children in this class are distinct. Every girl determines the number of boys that are taller
than her, subtracts the number of girls that are taller than her, and writes the result on a piece
of paper. Every boy determines the number of girls that are shorter than him, subtracts the
number of boys that are shorter than him, and writes the result on a piece of paper. Prove
that the numbers written down by the girls are the same as the numbers written down by the
boys (up to a permutation).

(proposed by Stephan Wagner, Austria)

Solution. We prove the statement by induction. The case n = 1 is easy (either both children
write down 0, or both write down 1). For the induction step, suppose that the children are
standing in a row in order of height (the tallest first), and consider a boy and a girl standing
next to each other (such a pair must clearly always exist). If k boys and ℓ girls are taller than
these two, then either both write down k − ℓ = (n − ℓ − 1) − (n − k − 1) (if the girl is taller),
or both write down (k + 1) − ℓ = (n − ℓ) − (n − k − 1) (if the boy is taller).

If we remove these two children from the class, the numbers of all the other children would
remain the same (the boy and the girl cancel in the other children’s calculations). Thus we are
done by the induction hypothesis.

Remark. This solution can be modified in many ways. For example, instead of removing
the two children, we can let them “switch heights”. This can be repeated until we reach the
situation that all boys are taller than all girls (or vice versa), in which case the numbers are
easy to determine.

Problem T-4
Prove that every integer from 1 to 2019 can be represented as an arithmetic expression consisting
of up to 17 symbols 2 and an arbitrary number of additions, subtractions, multiplications,
divisions and brackets. The 2’s may not be used for any other operation, for example to form
multi-digit numbers (such as 222) or powers (such as 22).

Valid examples:(
(2 × 2 + 2) × 2 − 2

2

)
× 2 = 22, (2 × 2 × 2 − 2) ×

(
2 × 2 + 2 + 2 + 2

2

)
= 42.

(proposed by Stephan Wagner, Austria)
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Solution 1. We will first prove by induction that every even number less than 2n can be
written with at most 3

2n−1 2’s. This is certainly true for n = 2 and n = 3 with 2 = 2, 4 = 2+2
and 6 = 2 + 2 + 2.

Let k ≥ 8 be an even number < 2n. If it is divisible by 4, it can be written as 2(k
2 ) which needs

at most 1 + 3
2(n − 1) − 1 < 3

2n − 1 by induction. If k ≡ 2 (mod 4), then k = 2 + 2 · 2k′ where
k′ < 2n−2. If k′ is an even number, then we obtain k using at most 1+2+ 3

2(n−2)−1 = 3
2n−1

2’s, by induction. If k′ is odd, then k′ +1 is even and we have k = 2·2(k′ +1)−2. If k′ +1 < 2n−2

then we can use induction again to get k with at most 1 + 2 + 3
2(n − 2) − 1 = 3

2n − 1 2’s. If
k′ + 1 = 2n−2, we obtain k = 2 · 2 · 2n−2 − 2 using n + 1 2’s which is less or equal to 3

2n − 1 since
n ≥ 4. This finishes the proof for even numbers.

Obviously, any odd number can be obtained from an even number by adding 2
2 , so any odd

number less than 2n can be obtained by at most 3
2n − 1 + 2 = 3

2n + 1 2’s, which for n = 11
yields 17 2’s.

Solution 2. It is enough to show that all multiples of 4 can be written using at most 15 2’s
(since numbers not divisible by 4 can be written as N + 2 or N ± 2

2 where N is divisible by
4). So, let N be divisible by 4 and let its binary representation be N = 2a1 + · · · + 2ak with
a1 > a2 > · · · > ak > 1. Since N < 2019 we have a1 ≤ 10. Observe that k is the number of 1’s
in the binary representation of N . We distinguish two cases:

1st case: Let k ≤ 6, i.e. there are at most six 1’s in the binary representation of N . Then we
can write

N = 2ak−1(2 + 2ak−1−ak(2 + 2ak−2−ak−1(2 + . . . (2 + 2a1−a2+1)))).

If we rewrite all powers using multiplication, we obtain an expression with ak − 1 + ak−1 − ak +
· · · + a1 − a2 + 1 = a1 2’s comming from powers and one additional 2 added in each bracket.
Since there are k − 1 brackets, we need a1 + k − 1 ≤ 10 + 5 = 15 2’s to represent N .

2nd case: Let k ≥ 7. Then we can write N = 211−1−2b1 −2b2 −· · ·−2bl , where b1 > b2 > · · · > bl

are the positions of zeros in the binary representation of N . Since N is divisible by 4, we have
bl = 0, bl−1 = 1. Similarly to the first case, we have

N = 211 − 2b1 − · · · − 2bl−2 − 4 = 2(2bl−2−2(2bl−3−bl−2(. . . (211−b1+1 − 2) . . . ) − 2) − 2).

If we expand powers into multiplications, the number of multiplicating 2’s is 1 + (bl−2 − 2) +
(bl−3 − bl−2)+ · · · +11− b1 +1 = 11 and the number of 2’s after minus signs in exactly l −1, i.e.
at most 10+ l 2’s in total. Since k ≥ 7, there are at most four zeros in the binary representation
of N , i.e. l ≤ 4 and 10 + l ≤ 15, which completes the proof.

Problem T-5
Let ABC be an acute-angled triangle such that AB < AC. Let D be the point of intersection
of the perpendicular bisector of the side BC with the side AC. Let P be a point on the shorter
arc AC of the circumcircle of the triangle ABC such that DP ∥ BC. Finally, let M be the
midpoint of the side AB. Prove that ∠APD = ∠MPB.

(proposed by Dominik Burek, Poland)
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Solution. Let the line DP intersects the cirmumcircle of the triangle ABC again at a point Q.
We can see that

∠ADQ = ∠ACB = ∠APB and ∠AQD = ∠AQP = ∠ABP.

This implies that the triangles AQD and ABP are similar and therefore the equality

AQ

QD
= AB

BP

holds.

A

B C

D

M

PQ

Since QP = 2 QD and AB = 2 MB we immediately obtain

AQ

QP
= MB

BP

Since further ∠AQP = ∠MBP , the triangles AQP and MBP are also similar. This yields
∠APD = ∠MPB and the proof is finished.

Remark. We can also prove that the line DP is the symmedian in vertex P of the triangle
ABP . For this purpose we can consider the point X of intersection of tangents to the circum-
circle of the triangle ABP at the vertices A and B, and then we can easily prove that the points
P , D and X are collinear.

Problem T-6
Let ABC be a right-angled triangle with its right angle at B and circumcircle c. Denote by
D the midpoint of the shorter arc AB of c. Let P be the point on the side AB such that
CP = CD and let X and Y be two distinct points on c satisfying AX = AY = PD. Prove
that the points X, Y and P are collinear.

(proposed by Dominik Burek, Poland)
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Solution. It will be enough to prove that PX ⊥ AC. Without loss of generality assume that
X lies in another half-plane with regard to the line AC than the point B. Let us denote K ̸= D
the point of intersection of the line DP and the circle c. Further, let S be the point on the ray
AX with AS = DK. Since D is the midpoint of the arc AB, we have

∠BAD = ∠PAD = ∠AKD = ∠AXD

and thus the triangles DAP and DKA are (by the AA-theorem) similar. Therefore it holds
AD2 = DP · DK = AX · AS. This implies that the triangles AXD and ADS are also similar.
Hence

∠DSA = ∠ADX = ∠ACX = 90◦ − ∠XAC = 90◦ − ∠SAC.

Thus SD ⊥ AC.

A

B

C

D

P

Y

X

K

S

L

c

c1

c2

Let c1 be the circle with center C and radius CD = CP . Similarly, let c2 be the circle with
center D and radius DA = DB. Finally, let L be a point of intersection of the lines SD and
AB. Then DL (i.e. DS) is the radical axis of c1 and c, because D lies on both circles (c1 and
c) and DS is perpedicular to the line passing through the centres of c1 and c.

Moreover, AB is the radical axis of c2 and c since both circles pass through A and B. Hence
the point L is the radical center of the cicles c, c1 and c2. For powers of the point K with
respect to the circles c1 and c2 we therefore have

Pow(K, c2) = DK2 − DA2 = DK2 − DP · DK = KP · KD = Pow(K, c1).

Thus KL is the radical axis of c1 and c2. In particular, KL is perpendicular to the line passing
through centres of these two circles. i.e. KL ⊥ CD. Since AD ⊥ CD, we get KL ∥ AD.
Similarity of the triangles KLP and DAP (the quadrilateral KLDA is a trapezoid with the
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intersection point P of its diagonals) further yields

AP

AL
= DP

DK
= AX

AS
,

thus PX ∥ DS, so PX ⊥ AC, and the proof is done.

Remark. To prove PX ⊥ AC there exist also many computational solutions using Pythagorean
theorem, analytical geometry or complex numbers.

Problem T-7
Let a, b and c be positive integers satisfying a < b < c < a + b. Prove that c(a − 1) + b does
not divide c(b − 1) + a.

(proposed by Dominik Burek, Poland)

Solution 1 Put A = c(a − 1) + b, B = c(b − 1) + a and suppose that A is a divisor of B. Then
A is also a divisor of the number C = bA − aB. Since

C = b(c(a − 1) + b) − a(c(b − 1) + a) = (b − a)(a + b − c) > 0,

it follows from c > b − a > 0 and a − 1 ≥ a + b − c > 0 that

A = c(a − 1) + b > c(a − 1) > (b − a)(a + b − c) = C.

Thus A > C > 0, which implies that A does not divide C, a contradiction.

Solution 2 It suffices to verify that

b − 1
a

<
c(b − 1) + a

c(a − 1) + b
<

b

a
,

because no integer lies between the two fractions b−1
a

and b
a
. Routine algebraic manipulations

show that the left-hand inequality is equivalent to

c > b − a2

b − 1 , where a2

b − 1 > 0,

while the right-hand inequality is equivalent to c < a + b. The proof is complete.

Solution 3 Put A = c(a − 1) + b, B = c(b − 1) + a and suppose that A divides B. We will
prove by induction that for any positive integer n, both inequalities b ≥ na and B ≥ nA hold
true. It is clear that no such a and b exist, since a ≥ 1 and thus b < na for some n.

For n = 1, we have b > a by the conditions of the problem. Besides, since A | B and A, B are
clearly positive, we have B ≥ A as well.
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Let n ≥ 1 be now an integer such that b ≥ na and B ≥ nA. Our goal is to prove that
b ≥ (n + 1)a and B ≥ (n + 1)A as well. Firstly we verify that B > nA. If b > na, then

B − nA = c(b − 1 − an) + cn + a − nb ≥ cn + a − nb = n(c − b) + a > a > 0

and we are done. On the other hand, if b = na, then nb − a = (n − 1)(a + b) and hence the
nonnegative number B − nA can be written as

B − nA = (n − 1)c − (nb − a) = (n − 1)c − (n − 1)(a + b) = (n − 1)(c − a − b),

which means that n = 1 (because of c < a + b), which contradicts to b = na. So B > nA is
proven. Since A | (B − nA), we have B − nA ≥ A, i.e. B ≥ (n + 1)A. To finish the second
induction step, it remains to prove that b ≥ (n + 1)a.

The proved inequality B ≥ (n + 1)A means that

c
(
b − (n + 1)a + n

)
≥ (n + 1)b − a.

Since b ≥ na implies that a ≤ b
n

and hence n+1
n

b ≥ a + b > c, we can conclude the following:

(n + 1)b − a ≥
(
(n + 1) − 1

n

)
b = n(n+1)−1

n+1 · n+1
n

b > n(n+1)−1
n+1 c =

(
n − 1

n+1

)
c.

Comparing this with the preceding inequality, we get

b − (n + 1)a + n > n − 1
n+1 , or b − (n + 1)a > − 1

n+1 > −1,

hence the integer b − (n + 1)a is nonnegative, as we wished to prove.

Problem T-8
Let N be a positive integer such that the sum of the squares of all positive divisors of N is
equal to the product N(N +3). Prove that there exist two indices i and j such that N = Fi ·Fj,
where (Fn)∞

n=1 is the Fibonacci sequence defined by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for all
n ≥ 3.

(proposed by Alain Rossier, Switzerland)

Solution Denote by 1 = d1 < d2 < · · · < dk = N all positive divisors of the given positive
integer N that satisfies

d2
1 + d2

2 + · · · + d2
k = N(N + 3), i.e. d2

2 + d2
3 + · · · + d2

k−1 = 3N − 1.

Now 3N − 1 > 0 implies that k ≥ 3. However, if k = 3, then N = p2 with some prime p = d2
satisfying p2 = 3p2 − 1, which is impossible. Thus k ≥ 4.

For each i = 2, 3, . . . , k − 1, we have didk+1−i = N and hence d2
i + d2

k+1−i ≥ 2N by the AM-GM
inequality. Consequently,

3N − 1 =
k−1∑
i=2

d2
i = 1

2

k−1∑
i=2

(
d2

i + d2
k+1−i

)
≥ 1

2(k − 2) · 2N = (k − 2)N.
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However, 3N − 1 ≥ (k − 2)N means that k ≤ 5 − 1
N

< 5, which together with the previous
fact that k ≥ 4 leads to the equality k = 4. Thus either N = p3 with p being a prime and our
equation becomes p2 + p4 = 3p3 − 1, or N has a factorization N = pq, with some primes p > q
and our equation becomes p2 + q2 = 3pq − 1. As the first case cannot have any solutions, we
conclude that the latter must be true.

Notice that the equation p2 + q2 = 3pq − 1 has ‘prime’ solutions (p, q) = (5, 2) = (F5, F3) and
(p, q) = (13, 5) = (F7, F5). This encourages us to prove a more general fact: Any solution (a, b)
of the equation a2+b2 = 3ab−1 with positive integers a > b is of the form (a, b) = (F2i+1, F2i−1),
for some i ≥ 1. After proving it, we get the desired representation N = pq = F2i+1F2i−1.

Assume to the contrary that there exist integers a > b > 0 such that a2 + b2 = 3ab − 1 but no i
such that a = F2i+1 and b = F2i−1. Among all such pairs (a, b), take the one with b minimal.
By Vieta’s formulas, the equation a2 + b2 = 3ab − 1 remains to hold if we replace a by the
number a′ that satisfies a + a′ = 3b and aa′ = b2 + 1. In view of the symmetry, the solutions of
the equation are then not only pairs (a, b) and (a′, b), but (b, a′) as well.

Note that the number a′ = 3b − a is an integer which is positive, because of a > 0 and
aa′ = b2 + 1 > 0. Moreover, a ≥ b + 1 implies that

a′ = b2 + 1
a

≤ b2 + 1
b + 1 = b − b − 1

b + 1 ≤ b.

Thus a′ < b, excepting the case when a = b + 1 and b = 1, i.e. (a, b) = (2, 1) = (F3, F1), but
this is in contradiction to our choice of (a, b). The established inequalities 0 < a′ < b show that
the new pair (b, a′) satisfies all the conditions above. By the minimality there must exist i such
that (b, a′) = (F2i+1, F2i−1). As a consequence, we get

a = 3b − a′ = 3F2i+1 − F2i−1.

However, we easily verify that 3F2i+1 − F2i−1 = F2i+3 for any i ≥ 1. After doing it, we conclude
that (a, b) = (F2i+3, F2i+1), contrary to the choice of (a, b).

To complete our solution, it remains to prove the identity 3F2i+1 − F2i−1 = F2i+3. Putting
u = F2i−1 and v = F2i, we successively get F2i+1 = u + v, F2i+2 = u + 2v, F2i+3 = 2u + 3v, so

3F2i+1 − F2i−1 = 3(u + v) − u = 2u + 3v = F2i+3.
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