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Problem I–1
Determine all real numbers A such that every sequence of non-zero real numbers x1, x2, . . .
satisfying

xn+1 = A − 1
xn

for every integer n ⩾ 1, has only finitely many negative terms.

Answer. All A ≥ 2 satisfy the given property.

First Solution
Let us assume that A ⩾ 2 holds and there is some n ⩾ 1 with xn < 0. Then xn+1 > A ⩾ 2.
We claim that xn+k > 1 for all k ≥ 1. This is easily proven by induction: we already did
this for k = 1, and the induction step follows from

xn+k+1 = A − 1
xn+k

> A − 1 ⩾ 1.

Hence, there is at most one negative term if A ⩾ 2.
Let us assume that A < 2 holds and there is a sequence (xn) such that xn > 0 for all
n ⩾ N . We write

xn+2 + 2 ⩽ xn+2 + xn+1 + 1
xn+1

= xn+1 + A

hence xn+2 ⩽ xn+1 + (A − 2) and thus xn+k < 0 for large enough k, contradiction.

Second Solution
The case A ⩾ 2 is handled as in the above solution.
In the case A < 2 assume that only finitely many members of the sequence are positive.
Without loss of generality we can assume all members are positive. We have that

xn+1 = A − 1
xn

< A < 2

so the sequence is bounded above. Additionally we have

xn+1 − xn = xn − xn−1

xnxn−1

so the sequence is monotonic due to xnxn−1 > 0. As we have that the sequence is bounded
below by 0 and bounded above, we have that it has a limit, denote it L > 0. Taking the
limit of the recursive relation we obtain

L = A − 1
L

=⇒ A = L + 1
L

⩾ 2,

which is a contradiction.
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Third Solution
The case A ⩾ 2 is handled as in the above solution.
Let us assume that there is a sequence (xn) such that xn > 0 for all n ⩾ N . Without loss
of generality, we may assume that xn > 0 for all n ⩾ 0. Summing the first n equalities
we obtain

x2 + . . . + xn+1 + 1
x1

+ . . . + 1
xn

= nA.

Since xk + 1
xk

⩾ 2 for k = 2, . . . , n, we get

0 ⩽ xn+1 + 1
x1

⩽ nA − 2(n − 1) = 2 − n(2 − A).

For large enough n this expression is negative so we get a contradiction.
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Problem I–2
Let m and n be positive integers. Some squares of an m × n board are coloured red.
A sequence a1, a2, . . . , a2r of 2r ⩾ 4 pairwise distinct red squares is called a bishop circuit
if for every k ∈ {1, . . . , 2r}, the squares ak and ak+1 lie on a diagonal, but the squares ak

and ak+2 do not lie on a diagonal (here a2r+1 = a1 and a2r+2 = a2).
In terms of m and n, determine the maximum possible number of red squares on an m×n
board without a bishop circuit.
(Remark. Two squares lie on a diagonal if the line passing through their centres intersects
the sides of the board at an angle of 45◦.)

First Solution
Obviously, for the tables 1×n and n×1, the largest number of black cells is n. Therefore,
we assume that m ≥ 2 a n ≥ 2 for the rest of the solution. In the table m × n, we can
color the first two rows, the first column and the last column, which is 2m + 2n − 4 black
cells in total. It is easy to see that such a table contains no bishop circuit.
Now we show that if there is no bishop circuit, there are at most 2m + 2n − 4 black cells
in the table m × n. We denote the cell in i-th row and j-th column by (i, j). The k-th
positive diagonal is a set of cells (i, j), such that i+ j −1 = k. Similarly, the k-th negative
diagonal is a set of cells (i, j), such that n + i − j = k.
Consider a bipartite graph G with partitions

A = {a1, a2, . . . , am+n−1} and B = {b1, b2, . . . , bm+n−1},

where the vertices ai and bj are connected by an edge if and only if the cell in the
intersection of the i-th positive diagonal and the j-th negative diagonal is black. Notice
that a bishop circuit corresponds to a circuit in G and vice versa.
The graph G has at least two components: If we color the cells of the table alternately
green and red like in chess, then the edges of G corresponding to green cells lie in a
different component that the edges of G corresponding to red cells – it is not possible to
move a bishop between a green and a red cell.
Furthermore, G has 2n + 2m − 2 vertices. If G is acyclic, then G is a forest consisting of
at least two trees. Therefore, G contains at most 2n + 2m − 2 − 2 = 2n + 2m − 4 edges
and that is the upper bound on the number of black cells we wanted to prove.

Second Solution
Denote by S the coloring configuration from the first proof consisting of the first two rows
and the first and the last column of the table. It is easy to see that S does not contain
the bishop circle. Also, S is maximal in the sense that if we add any new cell to it, the
new coloring will contain a bishop circle.
We will show that any optimal coloring C has the same number of cells as S by trans-
forming C to S by iterating the following steps:
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1) First we choose any cell a which is in S, but not in C. If there is no such cell, we
are done since maximality of S and optimality of C imply that S = C.

2) From the optimality of C it follows that there is a bishop circle B in the coloring
C ∪ {a} containing a. Since S does not contain a bishop circle, there is an element
b in cycle B which is not in S. We replace coloring C with the coloring C̃ =
(C ∪ {a}) \ {b}.

To finish the proof, we need to show that C̃ is optimal. For that we need to prove that
B is a unique cycle in C ∪ {a} containing a.
Assume the opposite. Let a0, a, a1, . . . a2r and b0, a, b1, . . . b2s be two bishop cycles in
C ∪ {a} such that a0 and b1 (as well as a1 and b0) are on the same diagonal. Consider
the cycle in C (every two consecutive cells are on the same diagonal)

a0, b1, b2, . . . , b2s, b0, a1, a2, . . . , a2r.

It remains to prove that it contains a bishop circle which will contradict the optimality
of C.
Note that no three consecutive cells are on the same diagonal, so the only problem is if
the cells are not pairwise different. Thus we can assume that we can write the cycle in
the following form

c1, . . . ck, c1, d1, d2, . . . , dt−1,

where t ≥ k. If we remove first k cells we obtain the cycle

c1, d1, d2, . . . , dt−1.

Furthermore, if dt−1, c1 and d1 are on the same diagonal, we remove c1. By repeating this
procedure, we end up with the bishop’s circuit.
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Problem I–3
Let ABC be an acute triangle and D an interior point of segment BC. Points E and F lie
in the half-plane determined by the line BC containing A such that DE is perpendicular
to BE and DE is tangent to the circumcircle of ACD, while DF is perpendicular to CF
and DF is tangent to the circumcircle of ABD. Prove that the points A, D, E and F
are concyclic.

First solution
Denote by T the intersection point of BE and CF . Clearly, D, E, F, T are concyclic
because of the right angle DET and TFD.

The tangent line DE gives ∠ADE = ∠ACD. Similarly ∠FDA = ∠DBA, therefore
∠FDE = 180◦ − ∠BAC. This gives

∠BTC = ∠ETF = 180◦ − ∠EDF = 180◦ − (180◦ − ∠BAC) = ∠BAC,

which means that B, C, A, T are also concyclic. With this we have

∠ATE = ∠ATB = ∠ACB = ∠ACD = ∠ADE,

which shows that A, E, D, T are also concyclic.
Therefore all points A, D, E, F, T are concyclic.
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Second solution
Denote the angles of ABC conventionally by α, β, γ, also let ∠BAD = x and ∠DAC = y.
As in the previous solution, notice that ∠FDE = 180◦ − α. It is enough to show that
∠EAF = α.
Because of the tangent line DE, it holds that ∠DBE = 90◦ − ∠EDB = 90◦ − y, and
analogously ∠FCD = 90◦ − x.
We will show that it cannot happen that both points E and F lie inside or outside ABC. If
they both were outside, we would have ∠DBE > ∠ABD and ∠FCD > ∠ACD, in other
words 90◦−y > β and 90◦−x > γ. The sum of these inequalities gives 180◦−x−y > β+γ,
which is a contradiction, since x + y = α. Analogously, E, F, cannot be both inside.

Without loss of generality assume that E is not outside ABC (i.e. it is inside or on AB)
and F is not inside (i.e. it is outside or an AC). In order to show that ∠EAF = α, it
remains to show that triangles AEB and AFC are similar.
We have ∠EBA = β − (90◦ − x) and ∠FCA = (90◦ − y) − γ. These two angles are equal,
since

β − (90◦ − x) − ((90◦ − y) − γ) = x + y + β + γ − 180◦ = α + β + γ − 180◦ = 0.

Now we can finish the proof by calculating ratios:

BE

CF
= BD · sin y

CD · sin x
= BD

sin x
· sin y

CD
= AB

sin∠ADB
· sin∠ADC

AC
= AB

AC
.
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Third Solution
Let G be the point on the line FD such that the quadrilateral ADCG is cyclic.
Since DF is tangent to the circumcircle of ABD we have ∠GAC = ∠GDC = ∠DAB.
Similarly, since DE is tangent to the circumcircle of ACD we have ∠GCA = ∠GDA =
∠FDA = ∠DBA. We hence conclude that the triangles ABD and ACG are spirally
similar with center at A.

Additionally, since ∠FGC = ∠DGC = ∠DAC = ∠BDE and ∠BED = ∠CFG = 90◦

(and thus △BED ∼ △CFG), we have that the same spiral similarity maps the point E
to point F . From this we get ∠EAF = ∠BAC.
Since DE and DF are tangent to the circumcircles of ACD and ABD respectively, we
also have ∠ADE = ∠ACD and ∠FDA = ∠DBA. Therefore,

∠FDE = ∠FDA + ∠ADE = ∠DBA + ∠ACD = 180◦ − ∠BAC.

By combining the above equalities, we get that ∠EAF = ∠BAC = 180◦ − ∠FDE and
thus A, D, E, F are concyclic, as desired.
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Problem I–4
Let n ⩾ 3 be an integer. Zagi the squirrel sits at a vertex of a regular n-gon. Zagi plans to
make a journey of n − 1 jumps such that in the i-th jump, it jumps by i edges clockwise,
for i ∈ {1, ..., n − 1}. Prove that if after ⌈n

2 ⌉ jumps Zagi has visited ⌈n
2 ⌉ + 1 distinct

vertices, then after n − 1 jumps Zagi will have visited all of the vertices.
(Remark. For a real number x, we denote by ⌈x⌉ the smallest integer larger or equal
to x.)

Solution
Number the vertices 0, 1, . . . , n − 1 clockwise starting at the vertex Zagi is on. After his
i-th jump Zagi will be at a vertex numbered 1 + 2 + · · · + i = i(i+1)

2 (mod n). We need
to prove that if for all k ∈

{
0, 1, 2, . . . , ⌈n

2 ⌉
}

the fractions k(k+1)
2 achieve different values

modulo n then they achieve different values modulo n even for all k ∈ {0, 1, 2, . . . , n − 1}.
We will in fact prove two following claims:

• for numbers of the form n = 2r, with r ≥ 2, all k ∈ {0, 1, 2, . . . , n − 1} the fractions
k(k+1)

2 achieve different values mod n;
• for numbers of the form n = 2r · l, with r ≥ 0 and l ≥ 3 odd, we have that there

exist distinct a, b ∈
{
0, 1, 2, . . . , ⌈n

2 ⌉
}

such that a(a+1)
2 ≡ b(b+1)

2 (mod n).

Let us firstly observe n of the form 2r, with r ≥ 2. Let as assume that there are 1 ≤
b < a ≤ n − 1 such that a(a+1)

2 ≡ b(b+1)
2 (mod 2r). Equivalently, 2r+1 | (a − b)(a + b + 1).

Factors on the right hand side have different parity, thus we have either 2r+1 | a − b or
2r+1 | a + b + 1. In the first case we have that a − b ≤ n − 1 < 2n. In the second case we
have a + b + 1 ≤ (n − 1) + (n − 2) + 1 = 2n − 2 < 2n. Hence, in both cases we obtain
contradiction, and we can conclude that there indeed do not exist such a and b.
Let us now observe n of the form 2r · l, with r ≥ 0, l ≥ 3 odd. Set M = max{2r+1, l} and
m = min{2r+1, l}. We claim that the pair (a, b) = (M+m−1

2 , M−m−1
2 ) satisfies the desired

conditions. Indeed:

• Since 2r+1 is even and l is odd, both M + m − 1 and M − m − 1 are even and thus
a, b are integers.

• We have: a(a+1)
2 − b(b+1)

2 = 1
2(a − b)(a + b + 1) = 1

2m · M = 2rl = n.
• Since M > m > 0, we have 0 ≤ b < a.

It remains to argue that a ≤ ⌈n
2 ⌉. Since r ≥ 0 and l ≥ 3 we conclude that both m, M

greater or equal to min{2r+1, l} ≥ 2. From mN = 2n, they are both less or equal to n.
So we have inequality (m − n)(m − 2) ≤ 0, which implies m + M = m + 2n

m
≤ 2 + n.

Hence a = M+m−1
2 ≤ n+1

2 ≤ ⌈n
2 ⌉ as desired.



Part II

Team Competition
August 26, 2021



MEMO 2021 Problems and Solutions

Problem T–1
Determine all functions f : R → R such that the inequality

f(x2) − f(y2) ⩽ (f(x) + y)(x − f(y))

holds for all real numbers x and y.

Answer. We have either f(x) = x for all x or f(x) = −x for all x.

Solution
It is easy to verify that the claimed solutions satisfy the desired inequality for all real
numbers x and y.
Plugging in x = y = 0 we get

0 ⩽ −(f(0))2,

which implies f(0) = 0.
Now setting y = 0 we obtain

f(x2) ⩽ xf(x).

On the other hand setting x = 0, we get

−f(y2) ⩽ −yf(y).

Therefore
f(x2) = xf(x) (1)

holds for all real x. Replacing x here with −x and comparing the expressions we obtain
−xf(−x) = xf(x). Therefore when x ̸= 0 we have f(−x) = −f(x). We also know this
holds for x = 0 since we showed f(0) = 0 so f is an odd function.
Replacing x with y and y with −x in the original inequality we obtain:

(f(y2) − f(x2)) ⩽ (f(y) − x)(y + f(x)).

This together with the original inequality implies

(f(x2) − f(y2)) = (f(x) + y)(x − f(y))

for all x, y ∈ R.
We further obtain (using (1)), that

xf(x) − yf(y) = (f(x) + y)(x − f(y))

which after expanding implies
0 = xy − f(x)f(y)

for all reals x and y.
Setting y = 1, we get x = f(x)f(1) for all x ∈ R. Choosing x = 1 implies f(1) = ±1.
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Problem T–2
Given a positive integer n, we say that a polynomial P with real coefficients is n-pretty if
the equation P (⌊x⌋) = ⌊P (x)⌋ has exactly n real solutions. Show that for each positive
integer n

(a) there exists an n-pretty polynomial;
(b) any n-pretty polynomial has a degree of at least 2n+1

3 .

(Remark. For a real number x, we denote by ⌊x⌋ the largest integer smaller than or equal
to x.)

Solution
We begin by making some preliminary observations. Let P be a real polynomial. We
associate to it the sets

S(P ) = {x ∈ R | P (⌊x⌋) = ⌊P (x)⌋} and I(P ) = {x ∈ Z | P (x) ∈ Z}.

Then it is easily seen that

S(P ) = I(P ) ∪
⋃

i∈I(P )
{x ∈ (i, i + 1) | P (x) ∈ [P (i), P (i) + 1)}. (†)

(i) We claim that P (x) = −
√

2(x − 1)2(x − 2)2 · . . . · (x − n)2 is n-pretty. Indeed, we
will show that S(P ) = {1, 2, . . . , n}. To see this, first observe that for all x ∈ R we
have P (x) ⩽ 0, with equality iff x ∈ {1, 2, . . . , n}. It follows that I(P ) ⊇ {1, 2, . . . , n},
but I(P ) ⊆ {1, 2, . . . , n} is also immediate because

√
2 is irrational. Hence, we have

I(P ) = {1, 2, . . . , n}. Finally, if i ∈ I(P ) and x ∈ (i, i + 1), then P (x) < 0, so P (x) ̸∈
[P (i), P (i) + 1). The claim now follows by (†).
(ii) Suppose P is a real polynomial with |S(P )| = n. It follows from (†) that we may
write I(P ) = {i1, i2, . . . , ik} for some positive integer k. Furthermore, if we define

Sj = {x ∈ (ij, ij + 1) | P (x) ∈ [P (ij), P (ij) + 1)}

for 1 ⩽ j ⩽ k, then (†) can be rewritten as

S(P ) = I(P ) ∪
k⋃

j=1
Sj (††).

Claim 1. k ⩽ d

Proof: Suppose that k ≥ d + 1 holds. By the Lagrange interpolation formula, we have

P (x) =
d+1∑
j=1

P (ij)
∏
l ̸=j

x − il

ij − il

.

Hence, P has rational coefficients, so we can write P (x) = Q(x)
M

, where M is a positive
integer and Q has integer coefficients. Then i1 + MZ ⊆ I(P ), so I(P ) is infinite, which
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is a contradiction.

Claim 2. For each 1 ⩽ j ⩽ k, we have P (x) ⩽ P (ij) for all x ∈ [ij, ij + 1).

Proof: Suppose not and pick x ∈ (ij, ij + 1) such that P (x) > P (ij). Note that P
is continuous, so by the intermediate value theorem, there exists y ∈ (ij, x) such that
P (y) = min

(
P (x)+P (ij)

2 , P (ij) + 1
2

)
∈ (P (ij), P (ij) + 1). By continuity of P , there exists

δ > 0 such that (y−δ, y+δ) ⊆ Sj. By (††), S(P ) is infinite, which is a contradiction.

Claim 3. For each 1 ⩽ j ⩽ k, P ′ has at least 2|Sj| zeroes in (ij, ij + 1).

Proof: Indeed, fix j ∈ {1, . . . , k} and let Sj = {x1, . . . , xm}, where we may assume
ij < x1 < . . . < xm < ij + 1. By Claim 2, we have P (xℓ) = P (ij) for all 1 ⩽ ℓ ⩽ m.
Then note that each xℓ is zero of P ′ since it is a local maximum of P . Letting x0 = ij,
note that P (xℓ−1) = P (xℓ), so Rolle’s theorem implies that (xℓ−1, xℓ) contains at least one
zero of P ′ for each 1 ⩽ ℓ ⩽ m. In total, there are at least 2m zeroes of P ′ in (ij, ij +1).

Finally, (††) implies that ∑k
j=1 |Sj| = n − k. It follows from Claim 1 that P is non-

constant, so P ′ has at most d − 1 zeroes. Hence, Claim 3 implies that 2 ∑k
j=1 |Sj| ⩽ d − 1.

Therefore, 2(n − k) ⩽ d − 1, so using Claim 1 we get 2(n − d) ⩽ d − 1. The desired
conclusion follows.

13/22



MEMO 2021 Problems and Solutions

Problem T–3
Let n, b and c be positive integers. A group of n pirates wants to fairly split their treasure.
The treasure consists of c · n identical coins distributed over b · n bags, of which at least
n − 1 bags are initially empty. Captain Jack inspects the contents of each bag and then
performs a sequence of moves. In one move, he can take any number of coins from a single
bag and put them into one empty bag. Prove that no matter how the coins are initially
distributed, Jack can perform at most n − 1 moves and then split the bags among the
pirates such that each pirate gets b bags and c coins.

Solution
We proceed by induction on n. The case n = 1 is trivial. Below we show that using one
move we can always create a b-tuple of non-empty bags with precisely c coins in total.
This finishes the proof as we can put that b-tuple of bags aside for one pirate and finish
by induction.
Sort the non-empty bags by size (the number of coins in them). Take a b-tuple B1 with b
smallest non-empty bags and a b-tuple B2 with b largest non-empty bags. If B1 contains
c coins in total, we are done. Otherwise, B1 contains fewer than c coins and B2 contains
more than c coins. One by one, replace a bag in B1 by a bag in B2. At some point, the
number of coins reaches (or exceeds) c for the first time. Suppose this happened when a
bag with x coins was replaced by a bag with y > x coins, the other b−1 bags in the b-tuple
containing a coins in total. Then we have a + x < c ⩽ a + y. Therefore we can move
a + y − c < y − x ⩽ y coins from the last bag to one empty bag which leaves the b-tuple
with precisely c coins and decreases the number of empty bags by one (if a + y = c, i.e.
we don’t move any coins, we still think of one bag becoming non-empty and containing 0
coins).
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Problem T–4
Let n be a positive integer. Prove that in a regular 6n-gon, we can draw 3n diagonals
with pairwise distinct ends and partition the drawn diagonals into n triplets so that:

• the diagonals in each triplet intersect in one interior point of the polygon and
• all these n intersection points are distinct.

Solution
For n = 1 take the main diagonals.
For n = 2 we have the following construction:

Denote the vertices A1, A2 . . . , A12. We will show that the lines A1A4, A2A6 and A3A11
are concurrent. Let X be the intersection point of A2A6 and A3A11. By symmetry,
A2A3X is isosceles right-angled triangle, so we have ∠A6A2A3 = ∠A11A3A2 = 45◦. Also
in the isosceles trapezium A1A2A3A4, we have ∠A2A1A4 = ∠A3A4A1 = 30◦. Hence we
can calculate the angles in the triangles A1A2X and A3A4X and we see

∠A1XA2 + ∠A2XA3 + ∠A3XA4 = 45◦ + 90◦ + 45◦ = 180◦.

This shows that X also lies on the line A1A4. In a similar manner we show that the lines
A5A9, A7A10 and A8A12 are concurrent.
For n = 2k, we can make the same construction and rotate it 2k−1 times.
Next we give the construction for odd primes n. Let A1, A2 . . . , A6n be the vertices. Take
every third main diagonal, starting at A1. Now let the other two diagonals for the main
diagonal A1A3n be A2A6n−1 and A3A6n. For the main diagonal A7A3n+7 take A5A8 and
A6A9 and so on. Going around this way we get a correct construction. The figure shows
it for n = 3.
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This shows that a construction exist for all odd prime n and in these constructions all the
n points lie on main diagonals, and none of them is the midpoint of the 6n-gon. For any
positive integer n which is not a power of 2, we can choose an odd prime p that divides
n. Then we can rotate the construction for p with angle 360◦

6n
· around the middle of the

p-gon. If we rotate it n
p
-times, then we get a construction for n, and all the n intersection

points are different. This holds, since all of the points lie on a main diagonal, and these
main diagonals are distinct for each rotation.
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Problem T–5
Let AD be the diameter of the circumcircle of an acute triangle ABC. The lines through
D parallel to AB and AC meet lines AC and AB in points E and F , respectively. Lines
EF and BC meet at G. Prove that AD and DG are perpendicular.

Solution
Let G′ denote the intersection of the line through D perpendicular to AD with line BC.
We will use Menelaus’ theorem to prove that E, F and G′ are collinear and hence, G = G′.

First, observe that because ∠DBE = ∠FCD = 90◦ and ∠DFC = ∠BED, triangles
EBD and FCD are similar. Let

λ := BE

CF
= DB

DC
= DE

DF
.

Since AEDF is a parallelogram, λ = DE

DF
= FA

AE
.

By the tangent angle theorem, triangles G′CD and G′DB are similar. From the sine
theorem we obtain

CG′

G′D
= sin(∠G′DC)

sin(∠DCG′) = sin(∠DBC)
sin(∠BCD) = DC

DB
.

Analogously, we infer BG′

G′D
= DB

DC
. Therefore,

BG′

G′C
= BG′

G′D
· G′D

CG′ =
(

DB

DC

)2
= λ2.

17/22



MEMO 2021 Problems and Solutions

In total, we obtain
CF

EB
· AE

FA
· BG′

G′C
= 1

λ
· 1

λ
· λ2 = 1,

and since E and F lie on segments AB and AC by acuteness of ∠BAC, and G′ lies
outside of the segment BC by convexity, Menelaus’ theorem implies G = G′ as desired.
Thus, ∠GDA = 90◦.
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Problem T–6
Let ABC be a triangle and let M be the midpoint of the segment BC. Let X be a point
on the ray AB such that 2∠CXA = ∠CMA. Let Y be a point on the ray AC such that
2∠AY B = ∠AMB. The line BC intersects the circumcircle of the triangle AXY at P
and Q, such that the points P , B, C, and Q lie in this order on the line BC. Prove that
PB = QC.

First Solution
Let P ′ and Q′ be points on line BC such that P ′M = AM = Q′M and B and P ′ are on
the same side of the line AM .
We have ∠P ′AM = ∠MP ′A = 1

2∠CMA = ∠CXA. Therefore points P ′, A, C, X are
concyclic.

This gives us that BP ′ ·BC = BX ·BA. Power of point B with respect to the circumcircle
of triangle AXY gives that BX · BA = BP · BQ. By combining the above equalities, we
get BP ′ · BC = BP · BQ.
Analogously as above, by considering point Q′ instead of P ′, we get that Q′, A, B, Y are
concyclic and thus CQ′ · BC = CP · CQ.
Since CQ′ = BP ′, we get BP · BQ = CP · CQ which is equivalent to BP · (BC + CQ) =
(BP + BC) · CQ, which finally gives BP = CQ, as desired.
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Second Solution
Denote the circumcircle of AXY by ω. Let O be the center of ω. Let XC and Y B
intersect ω again at Z and T , respectively. Note that

∠ZXT = ∠ZXA + ∠AY T = 1
2∠CMA + 1

2∠AMB = 1
2∠CMB = 90◦,

and therefore O is the midpoint of TZ.
Using Pascal’s theorem for degenerated hexagon AAXZTY we obtain that the intersec-
tion of ZT with the tangent line ℓ at A to ω is collinear with the points AX ∩ TY = B
and XZ ∩ Y A = C. In other words, ℓ, ZT , and BC concur at a single point, which we
shall denote by R.
Let M ′ be the midpoint of PQ. Then M ′ is the projection of O onto PQ. Points A, O,
M ′, and R lie on the circle with diameter OR. Hence

∠AM ′B = ∠AOR = 2∠AY T = ∠AMB,

and it follows that M ′ coincides with M .
Finally, since BC and PQ share their midpoints, we have PB = QC.

Third Solution
Choose a point D on the ray AM beyond the point M such that DM = BM = CM .
Then

∠ADB = 1
2∠AMB = ∠AY B,

hence A, B, D, Y lie on a circle. Similarly, A, C, D, X lie on a circle. Thus ∠DXB =
∠DCY and ∠XBD = ∠CY D. It follows that △DXB ∼ △DCY . Hence

BX

CY
= BD

DY
.

The sine rule yields
BD

DY
= sin∠BAD

sin∠DAY
.

Moreover,
BM

AB
= sin∠BAM

sin∠AMB
and CM

AC
= sin∠MAC

sin∠CMA
,

hence
sin∠BAM

sin∠MAC
= AC

AB
.

Combining all of these gives
BX

CY
= AC

AB
.

This means BX · AB = AC · CY , i.e. the power of points B and C with respect to the
circumcircle of AXY are equal. Hence PB · BQ = PC · CQ, so PB · (BC + CQ) =
(PB + BC) · CQ. This simplifies to PB = CQ.

20/22



MEMO 2021 Problems and Solutions

Problem T–7
Find all pairs (n, p) of positive integers such that p is prime and

1 + 2 + · · · + n = 3 · (12 + 22 + · · · + p2).

Answer. The only such pair is (n, p) = (5, 2).

Solution
The equation can be rewritten as

n(n + 1) = p(p + 1)(2p + 1). (2)

We conclude that p divides n or n + 1, so we divide the solution in two cases.
In the first case, if n = kp for some integer k > 0, then k(kp + 1) = (p + 1)(2p + 1).
Firstly, after observing the equation modulo p we can deduce that p | k − 1. Secondly,
the equation can be written as quadratic equation in p:

2p2 + (3 − k2)p + 1 − k = 0.

Its discriminant is D = (k2 − 3)2 + 8(k − 1). If k = 1 we obtain n = p, but this does not
lead to any solution. If k > 1, then D is strictly greater than (k2 − 3)2. To be a perfect
square, D must be greater than or equal to (k2 − 2)2. Hence we obtain

(k2 − 3)2 + 8(k − 1) ≥ (k2 − 2)2 =⇒ 2(k − 2)2 ≥ 5,

which holds only for k = 1, 2, 3. The case k = 1 is already solved. The case k = 2
implies that p | 2 − 1 = 1, which leads to contradiction. In the case k = 3, we similarly
obtain that p must be equal to 2, but the pair (k, p) = (3, 2) does not satisfy the equation
k(kp + 1) = (p + 1)(2p + 1).
In the second case, if p | n + 1, then we again introduce positive integer k such that
n + 1 = kp and obtain equation k(kp − 1) = (p + 1)(2p + 1). Now we have that p | k + 1,
and the quadratic equation in terms of p is

2p2 + (3 − k2)p + 1 + k = 0.

It discriminant D = (k2 − 3)2 − 8(k + 1) is less than (k2 − 3)2, so it must be less than or
equal to (k2 − 4)2:

(k2 − 3)2 − 8(k + 1) ≤ (k2 − 4)2 =⇒ 2(k − 2)2 ≤ 23.

We conclude k ≤ 5. Since p | k + 1, we have that p divides one of the numbers 2, 3, 4, 5, 6,
so we have p ∈ {2, 3, 5}. After we plug in those choices for p in (2), we obtain the only
solution (n, p) = (5, 2).
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Problem T–8
Prove that there are infinitely many positive integers n such that n2 written in base 4
contains only digits 1 and 2.

Solution
We prove that there are infinitely many n’s such that n2 written in base 4 contains
only 1 and 2, with the first and last digit being 1. One example is n = 5, for which
n2 = 25 = 1214.
Now we describe how for given such n we can obtain another, bigger one, which satisfies
these requirements as well. Let n2 have k digits in base 4 and satisfy aforementioned
requirements. Now let us consider the number n′ = 22k−1n + n. Then we have

n′2 = (22k−1n + n)2 = 42k−1n2 + 2 · 22k−1n2 + n2 = 42k−1n2 + 4kn2 + n2.

In base 4 this number consists of three copies of n2, with the first one (n2) ending on the
right, the second one (4kn2) ending right before the beginning of first one and the third
one (42k−1n2) overlapping by its last digit with first digit of second one. As both first
and last digit of n2 are 1, in this place 2 digits 1 get summed to digit 2. Otherwise there
are no other places where two non-zero digits would overlap, neither is there any ’empty
space’ which would get filled by zeros, so n′2 contains only digits 1 and 2. Furthermore,
first and last digit of n′2 is same as first and last digit of n2, so this property also remains.
By repeating this construction one gets an infinite sequence of numbers satisfying the
problem statement.
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