Solutions of EGMO 2021

Problem 1. According to Anna, the number 2021 is fantabulous. She states that if any element of the
set {m,2m + 1, 3m} is fantabulousfor a positive integer m, then they are all fantabulous. Isthe number
20212921 faptabulous?

(Australia, Angelo Di Pasquale)

Answer: Yes

Solution 1.

Consider the sequence of positive integers m, 3m,6m + 1,12m + 3,4m + 1, 2m. Since each number
in the sequence is fantabulous if and only if the next one is, we deduce that m is fantabulous if and only
if 2m is fantabulous.

Combined with the factthat m is fantabulous if and only if 2m + 1 is fantabulous, this implies that

m > 1 isfantabulousif and only if f(m) = [%] is fantabulous. We can apply f sufficiently many times

to any positive integer n to conclude that n is fantabulous if and only if 1 is fantabulous. Therefore, the

12021 :

fact that 2021 is fantabulous implies that 1 is fantabulous, which in turn implies that 202 is

fantabulous.

Solution 2.
Let m > 1 be a fantabulous number. Note that at least one of the following four cases must hold.

B Case 1. The number m is odd;
We have m = 2a + 1 for some positive integer a, so a < m isalso fantabulous.

m Case 2. The number m is a multiple of 3;
We have m = 3a for some positive integer a, so a < m isalso fantabulous.

m Case 3. The number m is 4 modulo 6;
We have m = 6a — 2 for some positive integer a. We have the sequence of fantabulous
numbers
(6a—2)->(12a—-3) > (4a-1),
so 4a — 1 < m s also fantabulous.



m Case 4. The number m is 2 modulo 6;
We have m = 6a + 2 for some positive integer a. We have the sequence of fantabulous
numbers
(6a+2)—> (12a+5) > (36a+15) > (18a+7) » (9a +3) » (Ba + 1),
so 3a + 1 < mis also fantabulous.

In all cases, we see that there is another fantabulous number less than m. Since 2021 is fantabulous,
it follows that 1 is fantabulous.

Observe that a number m is not fantabulous if and only if all of the elements of the set
{m,2m + 1,3m} are not fantabulous. So, the argument above shows that if there exists a positive
integer that is not fantabulous, then 1 would not be fantabulous either. This is a contradiction, so all

12021

positive integers are fantabulous and, in particular, 202 is fantabulous.

Solution 3.
The following transformations show that a is fantabulousif and only if 3a,3a + 1 or 3a + 2 are
fantabulous.
a—3a
a—-»>2a+1->6a+3—->3a+1
a—->2a+1->4a+3->12a+9->36a+27 ->18a+13 >9a+6—> 3a+2
This implies that a > 3 is fantabulous if and only if f(a) = E] is fantabulous. We can use this to
deduce that 1 and 2 are fantabulous from the fact that 2021 is fantabulous in the following way:
2021 » 673 > 224 574 >24 >8->2—>5-1
We can apply f sufficiently many times to any positive integer n to arrive at the number 1 or 2. It

follows that every positive integer is fantabulous, so 20212921 is fantabulous.

Problem 2. Find all functions f: Q — Q such that the equation

ff)+ y) = fy) + x?

holds for all rational numbers x and y.

Here, Q denotes the set of rational numbers.
(Slovakia, Patrik Bak)

Answer: f(x) = xand f(x) = —x.



Solution. Denote the equation from the statement by (1). Let xf (x) = A and x? = B. The equation
(1) is of the form

f(A+y)=f() +B
Also, if weputy - —A +y, wehave f(A — A+ y) = f(—A +y) + B. Therefore

f=A+y) =f(y) -B
We can easily show thatfor any integer n we even have

fA +y) = f(y) + nB (2)
Indeed, it’s trivially true for n = 0 and if this holds true for some integer n, then

f(n+DA+y) =fA+y+nA) =fny+A+B=f(y)+nB+B=f(y) +(n+1)B
and
f((n=1DA+y) = f(-A+nA+y) = f(nA+y) =B =f()+ nB~B = f(y) + (n— DB.
So, equation (2) follows from the induction on n.

Now we can say that for any integer k it holds

fnxf(x) +y) = f(y) +nx? 3)

If y is given, then f(y) + nx? can be any rational number, since nx? can be any rational number. If it
is supposed to be g, where g # 0, then we may taken = pq,andx = %. Therefore f is surjective on Q.
So there’s a rational number ¢ such that f(c) = 0. Be putting x = c into (1) we immediately getc = 0,
i.e. f(0) = 0. Therefore, f(x) = 0ifand onlyifx = 0.

For any integer n and for any rational x, y it holds

f?xf() +y) = f) +n?x? = f(y) + (nx)? = f(nxf(nx) + y) 4
After taking y = —nxf(nx) in (4), the right-hand side becomes 0, therefore
n?xf(x) —nxf(nx) = 0.
This simplifies into nf(x) = f (nx) for x # 0, but it also holds for x = 0. Therefore, for any rational
number x = s we have,

_ (P _ 1\ _ 1y f(q%)_p _
e =fE)=rp2)=p r()=p == =L s =xr

So, we have f(x) = kx, for some rational number k. Let’s put this answer in (1) and we get
k(xkx +y) = ky + x?,thus k? = 1. Therefore f(x) = x and f (x) = —x are solutions.

Problem 3. Let ABC be a triangle with an obtuse angle at A. Let E and F be the intersections of the
external bisector of angle A with the altitudes of ABC through B and C respectively. Let M and N be
the points on the segments EC and FB respectively such that ZEMA = £BCA and ZANF = £ABC.
Prove that the points E, F, N, M lie on a circle.

(Ukraine, Anton Trygub)



Solution 1.
The first solution is based on the main Lemma. We present this Lemma with two different proofs.

Lemma:Let ABC bean acute triangle with AB = BC. Let P beany pointon AC. Line passing through

P perpendicular to AB, intersects ray BC in point T. If the line AT intersects the circumscribed circle

of the triangle ABC the second time at point K, then ZAKP = £ABP.
B .

Proof1:
Let H be the orthocenter of the triangle ABP. Then
£BHP = 180° — £BAC = 180° — 2BCP.
So BHPC is cyclic. Then we get
TK-TA=TC-TB=TP-TH.
So, AHPK is also cyclic. But then
2AKP = 180° — LAHP = £ABP.

Proof2: B

Consider the symmetric points B’ and C' of B and C, /
respectively, with respect to theline PT. It is clear that

TC'-TB'=TC-TB =TK-TA.
So B'C'KA is cyclic. Also, because of the symmetry we have
o LP‘C'B' =¢PCB = LP/?B. A A{\. A
So B'C'PA s also cyclic. Therefore, the points B’,C’,K,P and A . V\“\v c
all lie on the common circle. Because of this fact and because of \§ ‘
the symmetry again we have {\ T
£PKA = /PB'A= LPBA. " o

So, lemma is proved and now return to the problem.

Let H be intersection point of the altitudes at B and C. Denoteby M' and N’ the intersection points
of the circumcircle of the triangle HEF with the segments EC and FB, respectively. We are going to
show that M = M’ and N = N’ and it will prove the points E, F, N, M lie on a common circle.

Of course, A is an orthocenter of the triangle BCH.
Therefore </BHA = +BCA, «.CHA= 2CBA and
2HBA = £HCA. Thus

¢HEF = tHBA+ £EAB = £tHCA + £FAC = £HFE.
So, the triangle HEF isisosceles, HE = HF.
By using lemma, we get
¢tAM'E = £AHE = £ACB,
and
2AN'F = £AHF = £ABC.
Therefore M = M'and N = N’ and we are done.




Solution 2.
Let X,Y be projections of B on AC, and C on AB, respectively. Let w be circumcircle of BXYC.LetZ
be intersection of EC and w and D be projection of E on BA.
LMAC = £LAME — £MCA = £XCB— £XCE = £ZCB = £ZXB

Since BXYC is cyclic ZACY = £XBA, and since
DEXA is cyclic

LEXD = £EAD = £FAC.
Therefore,we get thatthe quadrangles BZXDand
CMAF are similar. Hence £ZFMC = £DZB. Since
ZEDB is cyclic,

¢DZB = +DEB = £XAB.
Thus £ZFMC = £XAB. Similarly, ZENB = £YAC.
We get that ZFMC = £ENB and it implies that A ,
the points E, F, N, M lie on a circle. L

Problem 4. Let ABC be a triangle with incentre /and let D be an arbitrary point on the side BC. Let the
line through D perpendicular to BI intersect CI at E. Let the line through D perpendicular to CI
intersect BI at F. Prove that the reflection of A in the line EF lieson the line BC.

(Australia, Sampson Wong)

Solution 1.

Let us consider the case when I lies inside of triangle EFD. For the
other cases the proof is almost the same only with theslight difference.

Weare goingto prove thatthe intersection point of the circumcircles
of AEC and AFB (denote it by T) lies on the line BC and this point s the
symmetric point of A with respect to EF. First of all we prove that AETF
is cyclic, which implies that T lies on the line BC, because

£ATB + £ATC = £AFB + £AEC = £AFI + £AEI = 180°. 5

Denote by N an intersection point of the lines DF and AC. Of course N

is the symmetric point with respect to CI. Thus, ZINA = £IDB. Also,
2IFD = £NDC — £IBC = 90° — 2ICB — £IBC = £IAN.
So, we get that 4,1, N and F lie on a common circle. Therefore, we have
2AFI = £INA= £IDB. Analogously, ZAEI = £IDC and we have
2AFIl + £AEl = £IDB+ £IDC
© So £AFI + £AEI = 180, thus AEIF is cyclic and T lies on the line BC.




Because EC bisects the angle ACB and AETC is cyclic we get EA = ET.
Because of the similar reasons we have FA = FT. Therefore T is the
symmetric point of A with respect to the line EF and it lies on the line
BC.

Solution 2.
Like to the first solution, consider the case when / lies inside of triangle EFD. we need to prove that
AEIF is cyclic. The finish of the proofis the same.
A first note that A FDB~ A AIB, because £FBD = £ABI, and
£BFD = £FDC — £IBC = 90° — £ICD — £IBC = £IAB.

o AB _ BI .. . .
3 Because of the similarity we have TS Thisequality of the length ratios

with 2IBD = £ABF implies that A ABF~ A IBD. Therefore, we have
2IDB = £AFB. Analogously, we can get 2IDC = £AEC, thus
AFI + £AEI = £IDB + £IDC = 180°.
B D © So, AEIF is cyclic and we are done.

Problems 5. A plane has a special point O called the origin. Let P be a set of 2021 pointsin the plane,
such that

(1) no three pointsin P lie on a line and
(if) no two pointsin P lie on a line through the origin.

A triangle with verticesin P is fat, if O is strictly inside the triangle. Find the maximum number of far

triangles.

(Austria, Veronika Schreitter)

Answer: 2021 - 505 - 337

Solution

We will count minimal number of triangles that are not fat. Let F set of fat triangles, and S set of
triangles that are not fat. If triangle XYZ € S, we call X and Z goodvertices if OY is located between
OX and OZ. For A€ P let S4 € S be set of triangles in S for which A is one of the good vertex.

It is easy to see that

21| = Z 1S, (1)

A€eP



For A€ P,letRy, c P and L4 c P be parts of P\{A}divided by AO. Suppose for AXY € Svertex Ais
good, then clearly X,Y € R4 or X,Y € L,. On the other hand, if X,Y € R4 or X,Y € L, then clearly
AXY € S and A isits good vertex. Therefore,

|RA|) (lLA|>
= 2
1S4 ( 5 )+, (2)
It is easy to show following identity:
XxX+y(x+y 1
-1 yo-v_ (T @-p .
2 2 2 4
By using (2) and (3) we get
EAESIA 1010
1S4l =2- % =2-< ) ):1010-1009 4)
and the equality holds when |R,| = |L,| = 1010. Hence
Sl 2021-1010-1009
NE Z“‘Egl al > > = 2021 - 505 - 1009. (5)
Therefore,
2021
|F| = ( 3 ) —|S| <£2021-1010 - 673 — 2021 - 505 - 1009 = 2021 - 505 - 337. (6)

For configuration of points on regular 2021-gon which is centered at 0, inequalities in (4), (5), (6)
become equalities. Hence 2021 - 505 - 337isindeed the answer.

Problems 6. Does there exist a nonnegative integer a for which the equation

HEE Ry

has more than one million different solutions (m,n) where m andn are positive integers?
(The expression |x| denotestheinteger part (or floor) of the realnumberx. Tbus[\/EJ =1,ln] = l2_72J =
3,142] = 42 and l0] = 0)

(Austria, Veronika Schreitter)
Answer: Yes.
Solution.

Denote the equation from the statement by (1). The left hand side of (1) depends only on m, and
will throughoutbe denoted by L(m). Fixan integer ¢ > 107 and note that form = ¢3



3 a 3 a
wo= Y [fs F e Biseame

Indeed, the first inequality results from [x] < x. The second inequality can be seen (for instance) as

.. ) 31, . . .
follows. We divide the termsin the sum ZZ:@ into several groups: For j > 0, the j-th group contains

i . 1 . . . . 1
the 2/ consecutive terms YIRS Since every term in the j-th groupis bounded by; , the overall

ojt+1_q"
contribution of the j-th group to the sumis at most 1. Since the first g groups together would contain
29 —1 > g3 terms, the number of groups does not exceed g, and hence the value of the sum under
consideration isindeed bounded by q.

Call an integer m special, if it satisfies 1 < L(m) < g*. Denote by g(in) = 1 the largest integer
whose square is bounded by L(m); in other words g?(m) < L(m) < (g(m) + 1)2. Notethatg(m) <
q? for all special m, which implies

0<L(m)—g%(m) <(g(m)+ 1)?2—g?(m) =2g(m)+1<2q*+ 1. 3)

Finally, we do some counting. Inequality (2) and the monotonicity of L(m) imply that there exist
at least g3 special integers. Because of (3), every special integer m has0 < L(m) — g?(m) < 2q%+ 1.

3
qu2+2
frequently occurring value is our choice for @, which yields more than 10 solutions (m, g(m)) to

By averaging, at least > 10° special integers must yield the same value L(m) — g?(m). This

equation (1). Hence, the answer to the problem is YES.




