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1. Determine all functions 𝑓 : R → R such that, for all real numbers 𝑥 and 𝑦,

𝑓(𝑥2 + 𝑥𝑦) = 𝑓(𝑥)𝑓(𝑦) + 𝑦𝑓(𝑥) + 𝑥𝑓(𝑥+ 𝑦).

(Walther Janous, Austria)

Solution. Setting 𝑥 = 0 yields 𝑓(0) = 𝑓(0)𝑓(𝑦) + 𝑦𝑓(0). If 𝑓(0) ̸= 0, we obtain
1 = 𝑓(𝑦) + 𝑦 or equivalently 𝑓(𝑦) = 1 − 𝑦 for all 𝑦 ∈ R. Inserting this in the original
equation yields

1 − 𝑥2 − 𝑥𝑦 = (1 − 𝑥)(1 − 𝑦) + 𝑦(1 − 𝑥) + 𝑥(1 − 𝑥− 𝑦)

for 𝑥, 𝑦 ∈ R, which is true.
Therefore, we are left with 𝑓(0) = 0.
With the substitution 𝑥+ 𝑦 = 𝑧, the functional equation is equivalent to

𝑓(𝑥𝑧) = 𝑓(𝑥)𝑓(𝑧 − 𝑥) + (𝑧 − 𝑥)𝑓(𝑥) + 𝑥𝑓(𝑧). (1)

Exchanging 𝑥 and 𝑧 yields

𝑓(𝑧𝑥) = 𝑓(𝑧)𝑓(𝑥− 𝑧) + (𝑥− 𝑧)𝑓(𝑧) + 𝑧𝑓(𝑥). (2)

Combining (1) and (2) yields

𝑓(𝑥)𝑓(𝑧 − 𝑥) + (𝑧 − 𝑥)𝑓(𝑥) + 𝑥𝑓(𝑧) = 𝑓(𝑧)𝑓(𝑥− 𝑧) + (𝑥− 𝑧)𝑓(𝑧) + 𝑧𝑓(𝑥)

or equivalently
𝑓(𝑥)

(︁
𝑓(𝑧 − 𝑥) − 𝑥

)︁
= 𝑓(𝑧)

(︁
𝑓(𝑥− 𝑧) − 𝑧

)︁
. (3)

Setting 𝑧 = 0 yields
𝑓(𝑥)(𝑓(−𝑥) − 𝑥) = 𝑓(0)𝑓(𝑥) = 0,

so for each 𝑥 ∈ R we either have 𝑓(𝑥) = 0 or 𝑓(−𝑥) = 𝑥.
Assume that there is an 𝑥 ̸= 0 with 𝑓(𝑥) = 0. For 𝑧 ̸= 0, we have 𝑓(𝑥 − 𝑧) ∈

{0, 𝑧 − 𝑥}, so 𝑓(𝑥− 𝑧) ̸= 𝑧. Thus (3) implies 𝑓(𝑧) = 0 for all 𝑧 ̸= 0. It is clear that
the constant function 𝑓 = 0 is a solution.

Otherwise, we have 𝑓(𝑥) ̸= 0 for all 𝑥 ̸= 0 and therefore 𝑓(𝑥) = −𝑥 for all 𝑥.
This is also a solution.

We conclude that there are three solutions 𝑓 , namely 𝑓 = 0, 𝑓(𝑥) = −𝑥 and
𝑓(𝑥) = 1 − 𝑥.

Alternative Solution. Setting 𝑥 = 0 gives 𝑓(0) = 𝑓(0)𝑓(𝑦) + 𝑦𝑓(0). Since
𝑓(𝑦) = 1 − 𝑦 gives a solution, we remain with the case 𝑓(0) = 0. Setting 𝑥 = 1 gives

𝑓(1 + 𝑦) = 𝑓(1)𝑓(𝑦) + 𝑦𝑓(1) + 𝑓(1 + 𝑦), i. e. 0 = 𝑓(1)(𝑓(𝑦) + 𝑦).

Since 𝑓(𝑦) = −𝑦 is a solution, we remain with the case 𝑓(1) = 0.



Now suppose 𝑓(0) = 𝑓(1) = 0. Setting 𝑦 = −𝑥 gives 0 = 𝑓(𝑥)𝑓(−𝑥) − 𝑥𝑓(𝑥),
that is

𝑓(𝑥) = 0 ∨ 𝑓(−𝑥) = 𝑥. (4)

Setting 𝑦 = 1 − 𝑥 gives 𝑓(𝑥) = 𝑓(𝑥)𝑓(1 − 𝑥) + (1 − 𝑥)𝑓(𝑥), that is

𝑓(𝑥) = 0 ∨ 𝑓(1 − 𝑥) = 𝑥. (5)

If 𝑓(𝑥) ̸= 0 for some 𝑥 ̸= 0, we have 𝑓(−𝑥) = 𝑥 ̸= 0 and 𝑓(1 − 𝑥) = 𝑥 ̸= 0 and
applying (4) and (5) to −𝑥 and 1 − 𝑥 instead of 𝑥 we get 𝑓(𝑥) = −𝑥 = 1 − 𝑥, a
contradiction. Hence 𝑓(𝑥) = 0 for all 𝑥 ∈ R.

2. Let 𝐴𝐵𝐶 be an acute scalene triangle. Let 𝐷 and 𝐸 be points on the sides 𝐴𝐵
and 𝐴𝐶, respectively, such that 𝐵𝐷 = 𝐶𝐸. Denote by 𝑂1 and 𝑂2 the circumcentres
of the triangles 𝐴𝐵𝐸 and 𝐴𝐶𝐷, respectively. Prove that the circumcircles of the
triangles 𝐴𝐵𝐶, 𝐴𝐷𝐸 and 𝐴𝑂1𝑂2 have a common point different from 𝐴.

(Patrik Bak, Slovakia)

Solution 1. Let 𝑍 be the midpoint of the longer arc 𝐵𝐶 of the circumcirle 𝜔 of the
triangle 𝐴𝐵𝐶. The triangles 𝑍𝐷𝐵 and 𝑍𝐸𝐶 are congruent, because they agree in
the sides 𝐵𝐷 = 𝐶𝐸 and 𝑍𝐵 = 𝑍𝐶, as well as in the corresponding angles between
them, for both lie over the chord 𝐴𝑍 of 𝜔. It follows that ∠𝑍𝐷𝐴 = ∠𝑍𝐸𝐴, which
in turn discloses that the quadrilateral 𝐴𝐷𝐸𝑍 is cyclic. So it remains to be shown
that the quadrilateral 𝐴𝑂1𝑂2𝑍 is cyclic.
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The center 𝑂 of 𝜔 satisfies 𝑂𝑂1 ⊥ 𝐴𝐵 and 𝑂𝑂2 ⊥ 𝐴𝐶. The projections of 𝑂 and
𝑂1 onto 𝐴𝐶 are the midpoints of 𝐴𝐶 and 𝐴𝐸 respectively. Thus the projection of
the segment 𝑂𝑂1 onto 𝐴𝐶 has length 1

2𝐶𝐸. For the same reason, the projection of
𝑂𝑂2 on 𝐴𝐵 has length 1

2𝐵𝐷, and by hypothesis these two length agree. Moreover,
the angle between 𝑂𝑂1 and 𝐴𝐶 is the same as the angle between 𝑂𝑂2 and 𝐴𝐵. It
follows that 𝑂𝑂1 = 𝑂𝑂2.

Further, we have ∠𝐴𝑂𝑂1 = ∠𝐴𝐶𝐵 = ∠𝑂2𝑂𝑍, the latter being a consequence
of 𝑍𝑂 ⊥ 𝐵𝐶 and 𝑂𝑂2 ⊥ 𝐴𝐶. So the rays 𝑂𝐴 and 𝑂𝑍 are isogonal in the angle
𝑂2𝑂𝑂1. In the combination with 𝐴𝑂 = 𝑍𝑂 and 𝑂𝑂1 = 𝑂𝑂2 this proves that



the quadrilateral 𝐴𝑂1𝑂2𝑍 is an isocleses trapezium and thus in particular cyclic.
Thereby the problem is solved.

Solution 2. Let the circumcircles of triangles 𝐴𝐵𝐸 and 𝐴𝐷𝐶 intersect each other
again at 𝐹 ̸≡ 𝐴. Then the triangles 𝐵𝐹𝐷 and 𝐸𝐹𝐶 are congruent, for they agree
in their sides 𝐵𝐷 = 𝐶𝐸 as well as in their corresponding adjacent angles, i. e.,
∠𝐹𝐵𝐷 = ∠𝐹𝐸𝐶 and ∠𝐵𝐷𝐹 = ∠𝐸𝐶𝐹 . It follows that the altitudes of these
triangles passing through 𝐹 have the same lengths, wherefore 𝐴𝐹 is the bisector of
the angle 𝐵𝐴𝐶.
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Now construct the point 𝑆 such that 𝑆𝑂1𝐹𝑂2 is a parallelogram. We will show
that 𝑆 is the desired point.

To prove that 𝑆 lies on the circumcircle of triangle 𝐴𝑂1𝑂2, we note that the
triangles 𝐴𝑂1𝑂2 and 𝐹𝑂1𝑂2 are congruent due to 𝐴𝑂1 = 𝐹𝑂1 and 𝐴𝑂2 = 𝐹𝑂2.
It follows that 𝐴𝑂1𝑂2𝑆 is an isosceles trapezium and hence in particular a cyclic
quadrilateral, as claimed. Later, it will help us to have observed that the facts used
in this paragraph imply 𝐴𝑆 ‖ 𝑂1𝑂2 ⊥ 𝐴𝐹 .

Next, we prove that 𝑆 lies on the circumcircle of the triangle 𝐴𝐵𝐶 and that
it is actually the midpoint of its longer arc 𝐵𝐶; this will also show 𝑆 ̸≡ 𝐴, as
needed. Our first intermediate step is to observe that the triangles 𝑂1𝑆𝐵 and
𝑂2𝐶𝑆 are congruent. Indeed they agree in a pair of sides, 𝐵𝑂1 = 𝐹𝑂1 = 𝑆𝑂2 and
𝑆𝑂1 = 𝐹𝑂2 = 𝐶𝑂2. Moreover the corresponding angles between these sides are
equal, because their complements to 360∘ are equal as a consequence of

∠𝐵𝑂1𝐹 = 2∠𝐵𝐴𝐹 = 2∠𝐹𝐴𝐶 = ∠𝐹𝑂2𝐶

and ∠𝐹𝑂1𝑆 = ∠𝑆𝑂2𝐹 . This concludes the verification of △𝑂1𝑆𝐵 ∼= △𝑂2𝐶𝑆, and
it follows that 𝐵𝑆 = 𝐶𝑆. Further, since 𝐴𝐹 is the bisector of ∠𝐵𝐴𝐶 and 𝐴𝐹 ⊥ 𝐴𝑆,
the line 𝐴𝑆 is the exterior bisector of ∠𝐵𝐴𝐶. Altogether we obtain that 𝑆 is the
point described above. The fact that 𝑆 lies on the circumcircle of the triangle 𝐴𝐷𝐸
can be shown as in the first solution.

Solution 3. Denote by 𝑂 and 𝑃 the circumcentres of triangles 𝐴𝐵𝐶 and 𝐴𝐷𝐸,
respectively. The lines 𝑂𝑂1 and 𝑂2𝑃 (being the perpendicular bisectors of 𝐴𝐵



and 𝐴𝐷, respectively) are both perpendicular to 𝐴𝐵 and their distance is 1
2𝐵𝐷.

Similarly, the lines 𝑂𝑂2 and 𝑂1𝑃 are both perpendicular to 𝐴𝐶 and their distance
is 1

2𝐶𝐸. Since 1
2𝐵𝐷 = 1

2𝐶𝐸, the quadrilateral 𝑂1𝑂𝑂2𝑃 is a parallelogram with
equal altitudes, hence a rhombus. It follows that 𝑂𝑃 is the perpendicular bisector
of 𝑂1𝑂2, so all the three circumcentres of the triangles 𝐴𝐵𝐶, 𝐴𝐷𝐸 and 𝐴𝑂1𝑂2 lie
on the same line, which concludes the claim (since 𝐴 does not lie on this line because
of 𝐴𝐵 ̸= 𝐴𝐶).
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3. There are 2018 players sitting around a round table. At the beginning of the
game we arbitrarily deal all the cards from a deck of 𝐾 cards to the players (some
players may receive no cards). In each turn we choose a player who draws one card
from each of the two neighbours. It is only allowed to choose a player whose each
neighbour holds a nonzero number of cards. The game terminates when there is no
such player. Determine the largest possible value of 𝐾 such that, no matter how we
deal the cards and how we choose the players, the game always terminates after a
finite number of turns. (Peter Novotný, Slovakia)

Solution. The answer is 𝐾 = 2017.
For 𝐾 = 2018, we deal 2 cards to one player, 0 cards to one of his neighbours

and 1 card to everyone else. Then in each turn we choose the player with 0 cards:

. . . 1 1
yx
2 0 1 1 1 . . . → . . . 1 1 1 2 0 1 1 . . .

After each turn, the configuration stays the same – there is one player with 2 cards,
one of his neighbours with 0 cards and all the others with 1 card (the only change
is that the positions of the players with 2 and 0 cards is shifted). Therefore we can
make moves forever and the game never terminates.

Whenever𝐾 > 2018, we can play forever using the same strategy as for𝐾 = 2018.
We simply deal the extra cards arbitrarily and ignore them during the game.

Now we will prove that for 𝐾 = 2017 the game terminates no matter how we
play. Let us call zeros the players with no cards and ones the players with exactly
one card. The zeros split the other players into segments of various lengths. When
two zeros sit next to each other, they form a segment with a length of 0. Also note
that there is obviously at least one zero when 𝐾 = 2017.



Lemma. There exists a segment containing no other players than ones (possibly
with a length of 0).
Proof. If we add to each segment the zero which bounds it in the clock-wise direction,
then the sum of the lengths of all the segments will be 2018. There are only 2017
cards, therefore at least one segment contains fewer cards than players, which is
possible only when all the players of this segment, except for the bounding zero, are
ones. �

Let us consider the shortest segment among the ones containing no other players
than ones; the lemma assures the existence of such a segment. If we choose a zero
adjacent to this segment, we shorten it by 1 (or by 2 — in the special case when
there is exactly one zero in the game):

. . .
yx
* 0 1 1 1 . . . 1 0 . . . → . . . * 2 0 1 1 . . . 1 0 . . .

If we choose one of the ones inside of the shortest segment, we create two even
shorter segments:

. . . 0 1 . . . 1
yx
1 1 1 1 . . . 1 0 . . . → . . . 0 1 . . . 1 0 3 0 1 . . . 1 0 . . . →

The length of the shortest segment could decrease only finitely many times. From
the moment when it stops decreasing we won’t be able to choose any of the zeros
bounding the shortest segment, nor any of the ones inside of it. This means that the
game will continue on the other side of the table between the bounding zeros of the
shortest segment. The neighbours of these two zeros won’t be able to get any more
cards, so we cannot choose them anymore. The neighbours of these neighbours will
thereby be chosen at most finitely many times (at most the number of times equal
to the number of cards of these neighbours), so after some time we won’t be able
to choose them. We can use this reasoning repeatedly. The part of the table where
we still can choose players eventually decreases, which means that the game cannot
last infinitely long.
Remark. If 𝐾 = 2018 and we give one card to every player, then after one move we
would get a segment of ones bounded by two zeros. In that case the game necessarily
ends after finitely many moves (to see it we just need to use the reasoning from the
solution).
Remark. As soon as we show that the game will be played only in one part of
the table bounded by two players (so no cards will ever pass some line of the table
and therefore it could be think of as a line segment), we might just use a right
mono-variant to prove that the game is finite. For example, to each card we might
assign its distance to one of the bounds and keep track of the sum of squares of
these distances. In each move this number is decreased by

(𝑎− 1)2 + (𝑎+ 1)2 − 2𝑎2 = 2,

and since it cannot be negative, the game will have to eventually end.

4. Let 𝐴𝐵𝐶 be an acute triangle with the perimeter of 2𝑠. We are given three
pairwise disjoint circles with pairwise disjoint interiors with the centres 𝐴, 𝐵 and



𝐶, respectively. Prove that there exists a circle with the radius of 𝑠 which contains
all the three circles. (Josef Tkadlec, Czechia)

Solution 1. To simplify the formulations, we say that a point lies inside of the
circle if it lies on that circle or in its interior. Assume we are given a circle 𝜔 with
the radius of 𝑟 and the centre 𝑂. A circle 𝜔′ with the centre 𝑂′ contains the circle
𝜔 if and only if its radius is at least 𝑂′𝑂 + 𝑟.
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Denote by 𝑟𝑎, 𝑟𝑏, 𝑟𝑐 the radii of our circles with the centres at 𝐴, 𝐵 and 𝐶,
respectively. Using our observation three times indicates that the centre 𝑋 of the
circle we are seeking has to meet 𝑠 ≥ 𝐴𝑋 + 𝑟𝑎, or equivalently 𝐴𝑋 ≤ 𝑠 − 𝑟𝑎, and
analogously 𝐵𝑋 ≤ 𝑠− 𝑟𝑏 and 𝐶𝑋 ≤ 𝑠− 𝑟𝑐.

Notice that the numbers 𝑠− 𝑟𝑎, 𝑠− 𝑟𝑏 and 𝑠− 𝑟𝑐 are positive. We will show this
for 𝑠− 𝑟𝑎. Since our circles are disjoint with disjoint interiors, we know that 𝑟𝑎 < 𝑏
and 𝑟𝑎 < 𝑐. This gives us 𝑟𝑎 < (𝑏 + 𝑐)/2 < (𝑎 + 𝑏 + 𝑐)/2 = 𝑠, which indeed means
that 𝑠− 𝑟𝑎 is a positive number.

Now we may consider three circles with the centres 𝐴,𝐵 and 𝐶 and radii 𝑠− 𝑟𝑎,
𝑠− 𝑟𝑏 and 𝑠− 𝑟𝑐, respectively. If we prove that there is a point 𝑋 lying inside each
of them, we will be done.

Each two of these three circles intersect at two points, because for example
(𝑠 − 𝑟𝑎) + (𝑠 − 𝑟𝑏) > 2𝑠 − 𝑐 = 𝑎 + 𝑏 > 𝑐 (and also 𝑐 > |(𝑠 − 𝑟𝑎) − (𝑠 − 𝑟𝑏)|). For
the sake of contradiction assume there is no point lying inside all of them. Then
the situation looks like on the picture, that is, there exists a point 𝑋 inside of the
triangle which lies outside of the three circles (see the remark at the end):
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For such 𝑋 we have 𝐴𝑋 + 𝐵𝑋 + 𝐶𝑋 > 𝑠 − 𝑟𝑎 + 𝑠 − 𝑟𝑏 + 𝑠 − 𝑟𝑐 > 2𝑠. This is
not possible, however. Let 𝑌 be the intersection of 𝐵𝑋 and 𝐴𝐶. Then usign the
triangle inequalities for the triangles 𝐶𝑋𝑌 , 𝐴𝐵𝑌 we get

𝐵𝑋 + 𝐶𝑋 < 𝐵𝑋 +𝑋𝑌 + 𝐶𝑌 = 𝐵𝑌 + 𝐶𝑌 < 𝐴𝐵 + 𝐴𝑌 + 𝐶𝑌 = 𝐴𝐵 + 𝐴𝐶.



Similarly 𝐴𝑋 + 𝐵𝑋 < 𝐴𝐶 + 𝐵𝐶 and 𝐶𝑋 + 𝐴𝑋 < 𝐵𝐶 + 𝐴𝐵. Summing these
three inequalities we obtain 𝐴𝑋 + 𝐵𝑋 + 𝐶𝑌 < 𝐴𝐵 + 𝐵𝐶 + 𝐴𝐶 = 2𝑠, which is a
contradiction.
Remark. If three circles 𝜔𝑎, 𝜔𝑏 and 𝜔𝑐 with the centres 𝐴, 𝐵 and 𝐶, respectively,
satisfy the conditions that each two of them intersect and there is no point lying
inside all of the three circles, then there exists a point in the interior of the triangle
𝐴𝐵𝐶 which lies outside of each of the three circles.
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To prove this, consider the intersection point 𝑃 of 𝜔𝑏 and 𝜔𝑐 which lies in the
halfplane determined by the line 𝐵𝐶 and the point 𝐴. The intersection 𝑄 of the ray
𝐵𝐴 with 𝜔𝑏 lies inside of 𝜔𝑎, since it is the closest point of 𝜔𝑏 to 𝐴 (this is true even
if 𝐴 is inside of 𝜔𝑏, since 𝜔𝑎 ∩ 𝜔𝑏 ̸= ∅). Therefore 𝐴 cannot lie in the angle 𝐶𝐵𝑃
(otherwise 𝑄 would lie inside all of the three circles). But that means 𝑃 lies in the
interior of the angle 𝐶𝐵𝐴. Similarly 𝑃 lies in the interior of the angle 𝐵𝐶𝐴. So
we have that 𝑃 lies in the interior of the triangle 𝐴𝐵𝐶. Since 𝑃 does not lie inside
of 𝜔𝑎, there is a point in the neigbourhood of 𝑃 lying outside of all the three circles.
Solution 2. (by Tomáš Sásik.) We will use the same notation for the radii of the
given circles. Also here, we will consider the circles 𝜓𝑎, 𝜓𝑏, 𝜓𝑐 with radii 𝑠 − 𝑟𝑎,
𝑠− 𝑟𝑏, 𝑠− 𝑟𝑐 and prove that they have a common point. Without loss of generality
assume that 𝐴𝐵 is the shortest side. Let 𝑎 = 𝐵𝐶, 𝑏 = 𝐶𝐴, 𝑐 = 𝐴𝐵. Because of the
disjunction we have 𝑟𝑎 + 𝑟𝑏 < 𝑐, so 𝑠 − 𝑟𝑎 + 𝑠 − 𝑟𝑏 > 2𝑠 − 𝑐 = 𝑎 + 𝑏. Therefore at
least one of the inequalities

𝑠− 𝑟𝑎 > 𝑏, 𝑠− 𝑟𝑏 > 𝑎

must be true and the point 𝐶 lies inside of at least one of the circles 𝜓𝑎, 𝜓𝑏. Without
loss of generality we may assume it lies in 𝜓𝑎. Since 𝐴𝐵 ≤ 𝐴𝐶, we also have that
𝐵 lies inside of 𝜓𝑎, therefore the whole triangle 𝐴𝐵𝐶 lies there.

We have 𝑠 − 𝑟𝑏 + 𝑠 − 𝑟𝑐 ≥ 2𝑠 − 𝑎 > 2𝑠 − 𝑏 − 𝑐 = 𝑎, so the circles 𝜓𝑏, 𝜓𝑐 have
a common point on the side 𝐵𝐶, which lies also inside of the circle 𝜓𝑎. The rest
follows as in the first solution.
Solution 3. (by Radek Olšák.) First we grow the disks until two pairs of them
become tangent. Denote the new discs centered at 𝐴, 𝐵, 𝐶 by 𝐷𝑎, 𝐷𝑏, 𝐷𝑐 and their
radii by 𝑟𝑎, 𝑟𝑏, 𝑟𝑐. Without loss of generality, assume that 𝐷𝑎 is tangent to both 𝐷𝑏

and 𝐷𝑐 and that 𝑟𝑏 ≤ 𝑟𝑐. Clearly, 𝑟𝑎 + 𝑟𝑏 + 𝑟𝑐 ≤ 𝑠.
Consider a different configuration of the three discs 𝐷𝑏, 𝐷𝑎, 𝐷𝑐 in which their

centers lie on a line in this order and the neighbouring disks are tangent. Let 𝑋, 𝑌



be as in the figure and let 𝐷𝑠 be a disc with diameter 𝑋𝑌 . Clearly, 𝐷𝑠 covers all
three smaller discs and since 𝑋𝑌 = 2(𝑟𝑎 + 𝑟𝑏 + 𝑟𝑐) ≤ 2𝑠, its radius is at most 𝑠.

Finally, we observe that since 𝑟𝑏 ≤ 𝑟𝑐, we can rotate 𝐷𝑏 around the center 𝑂 of
𝐷𝑎 and it stays sinside 𝐷𝑠 (the disk with center 𝑂 and radius 𝑟𝑎 + 2𝑟𝑏 is contained
inside 𝐷𝑠). Hence the original configuration of disks can be covered by a disk of
radius at most 𝑠 as well.
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5. In a rectangle with dimensions 2 × 3 there is a polyline of length 36, which can
have self-intersections. Show that there exists a line parallel to two sides of the
rectangle, which intersects the other two sides in their interior points and intersects
the polyline in fewer than 10 points.

(Josef Tkadlec, Czechia, Vojtech Bálint, Slovakia)

d

y

x

Solution. Consider an arbitrary line segment of the polyline and denote by 𝑑 its
length and by 𝑥 and 𝑦 the lengths of its perpendicular projections on the sides of
lengths 2 and 3, respectively. Cauchy-Schwarz inequality gives us

(2𝑥+ 3𝑦)2 ≤ (22 + 32)(𝑥2 + 𝑦2) = 13𝑑2,

which means 2𝑥 + 3𝑦 ≤ 𝑑 ·
√

13. Denote by 𝑋 and 𝑌 the total length of all the
perpendicular projections of all the line segments on the sides of lengths 2 and 3,
respectively. Summing up our estimations for each line segment gives us 2𝑋+3𝑌 ≤
36 ·

√
13 < 130. But then either 2𝑋 < 40, or 3𝑌 < 90. In the first case we would

have 𝑋 < 20, so on the side of length 2 there is a point that is contained in fewer
than 10 projections. A line perpendicular to this side at this point intersects the
polyline at most 9 times. The other case is analogous.

6. We say that a positive integer 𝑛 is fantastic, if there exist positive rational
numbers 𝑎 and 𝑏 such that

𝑛 = 𝑎+ 1
𝑎

+ 𝑏+ 1
𝑏
.



(a) Prove that there exist infinitely many prime numbers 𝑝 such that no multiple
of 𝑝 is fantastic.

(b) Prove that there exist infinitely many prime numbers 𝑝 such that some multiple
of 𝑝 is fantastic.

(Walther Janous, Austria)

Solution. Note that

𝑟(𝑎, 𝑏) := 𝑎+ 1
𝑎

+ 𝑏+ 1
𝑏

= (𝑎+ 𝑏)(𝑎𝑏+ 1)
𝑎𝑏

.

We put 𝑎 = 𝑡
𝑢

and 𝑏 = 𝑣
𝑤

, where 𝑡, 𝑢, 𝑣 and 𝑤 are positive integers such that both
𝑡 and 𝑢 and also 𝑣 and 𝑤 are coprime. Then we get 𝑟(𝑎, 𝑏) = (𝑡𝑣+𝑢𝑤)(𝑡𝑤+𝑢𝑣)

𝑡𝑢𝑣𝑤
, whence

the Diophantine equation

𝑡𝑢(𝑣2 + 𝑤2) + 𝑣𝑤(𝑡2 + 𝑢2) = 𝑘𝑝𝑡𝑢𝑣𝑤 (6)

has to be investigated. Now gcd(𝑡𝑢, 𝑡2 + 𝑢2) = 1. Therefore, (6) implies 𝑡𝑢 | 𝑣𝑤. As
we get similarly 𝑣𝑤 | 𝑡𝑢, too, we infer

𝑡𝑢 = 𝑣𝑤 (7)

and (6) becomes

(𝑣2 + 𝑡2)(𝑣2 + 𝑢2)
𝑣2 = 𝑡2 + 𝑢2 + 𝑣2 + 𝑤2 = 𝑘𝑝𝑡𝑢.

Therefore, 𝑝 has to divide either 𝑣2 + 𝑡2 or 𝑣2 + 𝑢2. In the case 𝑝 ≡ −1 (mod 4),
i. e. when −1 is a quadratic non-residue mod 𝑝, this means that 𝑝 divides 𝑣 (and
𝑡 or 𝑢). But since the same argument is valid for 𝑤 instead of 𝑣, we have 𝑝 | 𝑣, 𝑤
contradicting the coprimality of 𝑣 and 𝑤. Thus the infinitely many primes with
𝑝 ≡ −1 (mod 4) have no fantastic multiple and part (a) is solved.

For part (b) we choose 𝑣 = 1 and substitute 𝑤 = 𝑡𝑢. Thus we are looking for
integers 𝑡 and 𝑢 such that

1 + 𝑡2 + 𝑢2 + 𝑡2𝑢2 = 𝑘𝑝𝑡𝑢.

Here we choose1 𝑡 = 𝐹2𝑙+1, 𝑢 = 𝐹2𝑙−1 and use the identity2 1 + 𝐹 2
2𝑙+1 = 𝐹2𝑙+3𝐹2𝑙−1

to obtain

(1+𝑡2)(1+𝑢2) = (1+𝐹 2
2𝑙+1)(1+𝐹 2

2𝑙−1) = 𝐹2𝑙+3𝐹2𝑙−1𝐹2𝑙+1𝐹2𝑙−3 = 𝑘𝑝𝑡𝑢 = 𝑘𝑝𝐹2𝑙+1𝐹2𝑙−1,

i. e. 𝐹2𝑙+3𝐹2𝑙−3 = 𝑘𝑝. Therefore every prime factor of the Fibonacci number 𝐹2𝑙+3
has a fantastic multiple.

In view of the well-known formula gcd(𝐹𝑎, 𝐹𝑏) = 𝐹gcd(𝑎,𝑏) it is clear that 𝐹𝑎 and
𝐹𝑏 are relatively prime, if 𝑎 and 𝑏 are different prime numbers. Hence we know that
infinitely many prime numbers have a fantastic multiple, which solves part (b).

1It is a well-known problem that 𝑡𝑢 | 𝑡2 + 𝑢2 + 1 with 𝑡 > 𝑢 is only possible if 𝑡 and 𝑢 are
Fibonacci numbers of the form 𝑡 = 𝐹2𝑙+1, 𝑢 = 𝐹2𝑙−1 in which case 𝑡2 + 𝑢2 + 1 = 3𝑡𝑢.

2This is a special case of Vajda’s identity 𝐹𝑛+𝑖𝐹𝑛+𝑗 − 𝐹𝑛𝐹𝑛+𝑖+𝑗 = (−1)𝑛𝐹𝑖𝐹𝑗


