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MEMO 2015 Individual Competition I-1
I-1 A
Find all surjective functions f : N Ñ N such that for all positive integers a and b, exactly one
of the following equations is true:

fpaq � fpbq,
fpa� bq � mintfpaq, fpbqu.

Remarks: N denotes the set of all positive integers. A function f : X Ñ Y is said to be surjective
if for every y P Y there exists x P X such that fpxq � y.

Solution 1. Each positive integer can be uniquely written as n � 2kl where k ¥ 0 and l is
odd. We will show that the only function satisfying the conditions is fp2klq � k � 1 for all
k ¥ 0 and all odd l.

Assume that fp1q � 1. Since f is surjective, there exists a P N such that fpaq � 1. Since
fp1q � 1 � fpaq, we get fpa � 1q � mintfpaq, fp1qu � 1, and inductively we get fpnq � 1 for
each n ¥ a. However, this contradicts the surjectivity of f .

Therefore fp1q � 1. Then fp2q � mintfp1q, fp1qu � 1, and fp3q � mintfp1q, fp2qu � 1. Now
it easily follows by induction that fpnq � 1 if n is odd and fpnq ¡ 1 if n is even.

We will show by induction on k that fp2klq � k � 1 for all odd l and fp2kmq ¡ k � 1 for all
even m. The basis of induction has been proved above. Assume that the statement holds for
all k   k0. We define new function g : NÑ N by gpnq � fp2k0nq � k0. By induction hypothesis
g indeed maps to N. In addition, on the set of all integers not divisible by 2k0 , the values of f
are smaller than k0 � 1. Values greater or equal to k0 � 1 are thus attained by f on the set of
integers divisible by 2k0 , making g surjective. A straightforward verification shows that g also
satisfies the remaining condition of the initial problem. So gpnq � 1 if n is odd and gpnq ¡ 1 if
n is even, as we have shown above. Therefore fp2k0lq � k0 � 1 for odd l and fp2k0mq ¡ k0 � 1
for even m, which completes the induction. It is easy to check that this function indeed satisfies
the conditions of the problem.

Solution 1a. Like in Solution 1 we prove that

fpoddq � 1, and fpevenq ¡ 1. (1)

We will show by induction on k that fp2klq � k � 1 for all odd l and fp2kmq ¡ k � 1 for
all even m. The basis of induction has been proved above. Assume that the statement holds
for all k   k0. Induction step is proved similarly as (1). Suppose fp2k0q � k0 � 1, meaning
that fp2k0q ¡ k0 � 1. Surjectivity of f implies, that there exists positive integer b such that
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MEMO 2015 Individual Competition I-1
fpbq � k0 � 1. By induction hypothesis b is of the form b � 2k0r for some r (r may be odd or
even). Considering the pair p2k0 , bq we get fp2k0pr�1qq � fpb�2k0q � mintfp2k0q, fpbqu � k0�1.
By induction we get fp2k0r1q � k0 � 1 for all r1 ¥ r, contradicting the surjectivity of f . Hence
fp2k0q � k0 � 1. Conditions of the problem and induction hypothesis imply that fpnq � k0 � 1
iff fpn � 2k0q ¡ k0 � 1. Therefore it follows inductively that fp2k0lq � k0 � 1 for odd l and
fp2k0mq ¡ k0 � 1 for even m, which finishes the induction step.

It is easy to check that the function defined by fp2k0lq � k0 � 1 for odd l indeed satisfies the
conditions of the problem.

Solution 2. Like in Solution 1 we prove that fpoddq � 1, and fpevenq ¡ 1. Define a sequence
of functions gk : NÑ N by

g0pnq � fpnq and gkpnq � gk�1p2nq � 1, for k P N.

Using first part of solution we prove by induction that all gk satisfy the initial conditions of the
problem (they map to N, are surjective and satisfies mutually exclusive equations). It follows
from the first part of the solution that gkpoddq � 1 for all k � 0, 1, 2, . . . From gkplq � 1 for
odd l we inductively obtain fp2klq � k � i by backward substitution. This shows that shows
that the problem has a unique solution given by fp2klq � k � 1 for all k ¥ 0 and all odd l. It
is easy to check that this function indeed satisfies the conditions of the problem.

Solution 3. Plugging pair pa, aq into the given equations we obtain fp2aq � mintfpaq, fpaqu �
fpaq, in particular fp4aq � fp2aq. From pair pa, 2aq we get fp3aq � fp2a�aq � mintfp2aq, fpaqu.
Suppose fp2aq   fpaq. Then fp3aq � fp2aq � fpaq. Considering pair pa, 3aq we thus get
fp4aq � mintfpaq, fp3aqu � fp2aq, a contradiction. Hence fp2aq ¡ fpaq.
Next we prove by induction on l that fplaq � fpaq for all odd l. For l � 1, there is nothing to
show. We assume that fppl � 2qaq � fpaq. As fp2aq ¡ fpaq, we have

fplaq � mintfppl � 2qaq, fp2aqu � mintfpaq, fp2aqu � fpaq,

which proves the induction step.

Let now n � 2kl for odd l. By the above we have fpnq � fp2kq. Thus we only have to determine
fp2kq for k ¥ 0. Since fp2aq ¡ fpaq for all a, fp2kq is increasing in k. By surjectivity, the only
solution is fp2kq � k � 1. It is easily seen that fp2klq � k � 1, is indeed a solution.
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MEMO 2015 Individual Competition I-2
I-2 C
Let n ¥ 3 be an integer. An inner diagonal of a simple n-gon is a diagonal that is contained in
the n-gon. Denote by DpP q the number of all inner diagonals of a simple n-gon P and by Dpnq
the least possible value of DpQq, where Q is a simple n-gon. Prove that no two inner diagonals
of P intersect (except possibly at a common endpoint) if and only if DpP q � Dpnq.
Remark: A simple n-gon is a non-self-intersecting polygon with n vertices. A polygon is not
necessarily convex.

Solution 1. First we prove that for every n-gon P with n ¥ 4 we have DpP q ¥ 1. Let A
be one of the vertices of P with inner angle les than 180�. Denote the two vertices adjacent
to A by B and C. The segment BC is a diagonal of P , since n ¥ 4. If it lies in P , we are
done, so suppose it does not lie in P . Let C 1 be the unique point on the segment AC such that
the triangle ABC 1 lies in P and the segment BC 1 contains at least one point in the boundary
of P distinct from B and C 1. Let D � C 1 be the point on the segment BC 1, which lies in
the boundary of P and is closest to C 1. Then D must be a vertex of P and AD is an inner
diagonal.

Next we prove that Dpnq � n� 3.

n� 1 vertices

On the picture diagonals between pairs of points on bottom are clearly outer because that part
of polygon is concave. Therefore inner diagonals only exist between upper point and lower
points. Number of those diagonals is n� 3 therefore Dpnq ¤ n� 3.
We prove by induction that Dpnq ¥ n � 3. The case n � 3 is clear. So suppose n ¥ 4 and let
P be a n-gon. By the above there exists an inner diagonal of P . This diagonal divides P into
two polygons R and S with k and m vertices respectively. Clearly k,m   n and k�m � n�2.
By induction we have Dpkq ¥ k � 3 and Dpmq ¥ m� 3. Note that DpP q ¥ DpRq �DpSq � 1,
hence DpP q ¥ pk � 3q � pm � 3q � 1 � k �m � 5 � n � 3. Since P was arbitrary this shows
that Dpnq ¥ n� 3.

Now we prove the claim by induction. Again the case n � 3 is clear. So assume n ¥ 4. As
above there exists an inner diagonal d of P and it divides P into polygons R and S with k and

4



MEMO 2015 Individual Competition I-2
m vertices, where k �m � n� 2. In addition

DpP q ¥ DpRq �DpSq � 1 ¥ Dpkq �Dpmq � 1 � n� 3.

If DpP q � Dpnq � n� 3 then in the above inequality we actually have equalities. In particular
DpP q � DpRq �DpSq � 1 which means that the inner diagonals of P are d and those that lie
in R or S. In addition DpRq � Dpkq and DpSq � Dpmq, so by induction the inner diagonals
of R and S do not intersect. Thus the inner diagonals of P do not intersect. Conversely, if
the inner diagonals of P do not intersect then the inner diagonals of R and S do not intersect
and DpP q � DpRq � DpSq � 1 holds. By induction we have DpRq � Dpkq � k � 3 and
DpSq � Dpmq � m� 3, thus DpP q � pk � 3q � pm� 3q � 1 � n� 3 � Dpnq.

Solution 2. (using triangulation)

Claim 1.
Every n-gon P can be triangulated with exactly n� 3 inner diagonals.
Proof
This is well known but can also be proven from DpP q ¥ 1 by induction.
Claim 2.
For every polygon P and and every inner diagonal ` there exists triangulation that includes `.
Proof
Diagonal ` divides polygon P into two separate polygons. Both of them can be triangulated.
Therefore also P can be triangulated.

From claim 1 it follows that Dpnq ¥ n � 3. With the same example as in solution 1 we can
show that Dpnq ¤ n� 3. Therefore Dpnq � n� 3.

Option 1.
If inner diagonals in n-gon do not intersect then they must all form one triangulation. Because
every triangulation has exactly n� 3 diagonals the number of all inner diagonals in P is n� 3
and therefore DpP q � n� 3.

Suppose DpP q � n � 3. If we take a triangulation of P it has exactly n � 3 inner diagonals.
Therefore all inner diagonals are included in this triangulation and they do not intersect. So
no inner diagonals in P intersect.

Option 2.
We can prove that inner diagonals of n-gon do not intersect if and only if there exists exactly one
triangulation of P . Suppose some two inner diagonals would intersect. By claim 2 each of them
would be a part of some triangulation and those two triangulations would be different. Hence we
have a contradiction. Similarly suppose there would exist at least two different triangulations.
Because each of them is produced with n� 3 inner diagonals some diagonals must be different.
Therefore some of them must intersect otherwise there would exist triangulation with more
diagonals. Hence we again get a contradiction and the equivalence is proven.
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MEMO 2015 Individual Competition I-2
It remains to prove that P has exactly one triangulation if and only if DpP q � n � 3. If P
has only one triangulation then P has at least n � 3 inner diagonals. But there can not be
any other inner diagonals otherwise it would follow from claim 2 that there exists a different
triangulation with some other diagonals. If it holds DpP q � n�3 then there must exist exactly
one triangulation with exactly those n� 3 inner diagonals.
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I-3 G
Let ABCD be a cyclic quadrilateral. Let E be the intersection of lines parallel to AC and BD
passing through points B and A, respectively. The lines EC and ED intersect the circumcircle
of AEB again at F and G, respectively. Prove that points C, D, F , and G lie on a circle.

Solution 1. The solution uses directed angles. It suffices to show =GDC � =GFC, which is
done as follows

=GDC � =EDC � =EDB �=BDC

� =DEA�=BAC � =GEA�=ABE

� =GBA�=ABE � =GBE � =GFE � =GFC.
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MEMO 2015 Individual Competition I-4
I-4 N
Find all pairs of positive integers pm,nq for which there exist relatively prime integers a and b
greater than 1 such that

am � bm

an � bn

is an integer.

Answer. pm,nq � pqn, nq where q is an odd positive integer and n is an arbitrary positive
integer

Solution 1. If m
n
� q is an odd integer, we have

am � bm

an � bn
� panqq � pbnqq

an � bn
� panqq�1 � panqq�2 � bn � � � � � an � pbnqq�2 � pbnqq�1,

what is an integer for all positive integers a and b. We will prove that pairs pqn, qq, where q is
an odd integer, are the only solutions. Let us assume the opposite, i.e. that there exist pairs
pm,nq that are solutions to our problem for which m

n
is not an odd integer. Among those pairs,

let us choose one pair having the minimal sum.

Obviously, m ¡ n. Let m � n� k for a positive integer k. Without loss of generality, we may
assume a ¡ b. In that case

am � bm

an � bn
¡ an � bk � bm

an � bn
� bk,

thus there exists a positive integer t such that

am � bm

an � bn
� bk � t.

This equation can be written as follows:

am � bm � pbk � tqpan � bnq,
am � anbk � tpan � bnq.

Since a and b are relatively prime, an � bn and an are relatively prime as well. Therefore, from
the last equation we can conclude that t is divisible by an. Let c be a positive integer such that
t � c � an. We have

ak � bk � c � an � c � bn.
The right-hand side of the previous equation is greater than an so we conclude that k ¡ n.
Previous equation can be written as

anpak�n � cq � bnpbk�n � cq.
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This implies that bk�n � c is divisible by an, since a and b are relatively prime. Let x be a
positive integer such that

bk�n � c � x � an.
The previous equation gives us

ak�n � c � x � bn.
Summing the last two equations gives us

ak�n � bk�n � xpan � bnq,

which means that
ak�n � bk�n

an � bn

is an integer. Since pk�nq�n � k   m�n and because we have chosen pm,nq to have minimal
sum, we conclude that

k � n

n
� s

is an odd positive integer. Let r ¥ 0 be an integer such that s � 2r � 1. This implies that

k � n � p2r � 1q � n,

i.e.
k � p2r � 2q � n.

This means that
m

n
� n� k

n
� p2r � 2q � n� n

n
� 2r � 3,

which contradicts our assumption that m
n
is not an odd integer. Therefore, the only solutions

are pairs pm,nq � pqn, nq where q is an odd positive integer and n is an arbitrary positive
integer.

Solution 2. Clearly m ¡ n. Write m � kn� r, where k ¥ 1 and 0 ¤ r   n. Since

am � bm

an � bn
� apk�1qn�r � bm � apk�1qn�rbn

an � bn

is integer, bm�apk�1qn�rbn

an�bn is integer as well. However, since a and b are coprime,

bm�n � apk�1qn�r

an � bn
� �apk�2qn�r � apk�2qn�rbn � bm�n

an � bn

is again an integer. Proceeding this way we get that an � bn divides br � p�1qkar. Since
|br � p�1qkar|   an � bn, we conclude that br � p�1qkar � 0. Since a and b are coprime, r has
to be zero and k odd. So the only solutions are pkn, nq where k is an odd integer.
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Solution 3. If m   n, then am � bm   an � bn and so there are no solutions. Assume now
that m ¥ n. Using long division, we get:

pam � bmq : pan � bnq � am�n � am�2nbn � am�3nb2n � � � �
am � bnam�n

bm � bn � am�n

�am�nbn � b2nam�2n

bm � b2nam�2n

am�2nb2n � am�3nb3n

bm � am�3nb3n

...

The remainders after each step are of the form bm � p�1qkam�knbkn. For the expression to be
an integer, one of these expressions has to be equal to zero. This can only happen when k is
odd and m � kn. Finally, we check that for pm,nq � pkn, nq for k odd we get

am � bm � pan � bnqppanqk�1 � � � � � pbnqk�1q.
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MEMO 2015 Team Competition T-1
T-1 A
Prove that for all positive real numbers a, b, c such that abc � 1 the following inequality holds:

a

2b� c2 �
b

2c� a2 �
c

2a� b2 ¤
a2 � b2 � c2

3 .

Solution 1. Using the given condition abc � 1 we get the following:
¸
cyc

a

2b� c2 �
¸
cyc

a

b� b� c2

AM–GM¤
¸
cyc

a

3 3
?
b2c2

�
¸
cyc

�a
3 �

3
?
a2
	

GM–AM¤
¸
cyc

�
a

3 �
a� a� 1

3



�
¸
cyc

ap2a� 1q
9 � 2

9
¸
cyc
a2 � 1

9
¸
cyc
a.

Now it suffices to prove that 2
9
°

cyc a
2� 1

9
°

cyc a ¤ 1
3
°

cyc a
2, which is equivalent with

°
cyc a

2 ¥°
cyc a and that can be easily proven in the following way:

¸
cyc
a2 QM–AM¥ 3 �

�°
cyc a

3


2

�
°

cyc a

3 �
¸
cyc
a

A–G¥
°

cyc a

3 � 3 3
?
abc �

¸
cyc
a.

Solution 2. As in the first solution we first show

a

2b� c2 �
b

2c� a2 �
c

2a� b2 ¤
a

5
3 � b

5
3 � c

5
3

3 .

Now we use the condition abc � 1 and Muirhead’s inequality to get

a
5
3 � b

5
3 � c

5
3 � a

16
9 b

1
9 c

1
9 � a

1
9 b

16
9 c

1
9 � a

1
9 b

1
9 c

16
9 ¤ a2 � b2 � c2.

The inequality is proved.

Solution 3. Using the given condition abc � 1 we get the following:

¸
cyc

a

2b� c2 �
¸
cyc

a2bc

2b� c2 �
¸
cyc

a2

2
c
� c

b

�
¸
cyc

a2

1
c
� 1

c
� c

b

HM–GM¤
¸
cyc

1
3a

2 3

c
cc
b

c
�
¸
cyc

1
3a

2 3
?
bc �

¸
cyc

1
3a

2 3

c
1
a
�
¸
cyc

1
3a

5
3
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Using the inequality between quadratic mean and mean with coefficient 5

3 we get the following:

a
5
3 � b

5
3 � c

5
3

3 ¤
�
a2 � b2 � c2

3


 1
2 �

5
3

�
�
a2 � b2 � c2

3


 5
6

.

Now it is sufficient to prove that a2�b2�c2

3 ¥ 1, which follows directly from GM–AM inequality:

a2 � b2 � c2

3 ¥ 3
?
a2b2c2 � 1
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MEMO 2015 Team Competition T-2
T-2 A
Determine all functions f : Rzt0u Ñ Rzt0u such that

fpx2yfpxqq � fp1q � x2fpxq � fpyq

holds for all nonzero real numbers x and y.

Answer. fpxq � 1
x2 and fpxq � � 1

x2

Solution 1. Let f be any function with the desired property and set α � fp1q.

Lemma. Let x P R�0 be arbitrary and put z � x2fpxq. Then fpzq � z, fpz2q � 2z � α and
z2 � 3z � 2α.

Proof. Substituting y � 1 and y � z into the given functional equation we obtain fpzq � z and
fpz2q � α � z � fpzq, whereby the first two parts of the claim are proved. Applying the first
part to z in place of x we infer that z2fpzq � z3 is a fixed point of f as well, i.e., fpz3q � z3.
On the other hand we may plug y � z2 into the given equation, thus getting fpz3q � α �
z � fpz2q � 3z � α. Comparing the two previous results we learn indeed z3 � 3z � 2α.

In the particular case x � 1 we have z � α and the third part of the lemma tells us α3 � α.
Since the number α is a value attained by f , it cannot vanish, so α � �1.

Let us now return to the situation of the above lemma. The third equation may now be
rewritten as pz � αq2pz � 2αq � z3 � 3z � 2α3 � 0. It follows that either z � α or z � �2α.

Assume there were a nonzero real number x such that z � x2fpxq has the property z � �2α.
Then our lemma yields fpzq � �2α, whence z2fpzq � �8α3 � �8α R tα, 2αu, which means
that z in place of x violates the result from the previous paragraph. This proves that z � α

holds for all real x � 0.

In other words we have fpxq � α
x2 for all nonzero real numbers x. Due to α � �1 this shows

that f is one of the two functions mentioned in the answer.

It is easy to verify that they do indeed solve the functional equation under consideration both
of its sides being equal to α � α

y2 .
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Solution 2. First we insert y � 1 into the equation and we get

fpx2fpxqq � x2fpxq (1)

for all nonzero real numbers x. In particular, fpfp1qq � fp1q. Putting x � 1 into the given
equation yields fpyfp1qq � fpyq for each y � 0. In particular, inductively we get fpfp1qkq �
fp1q for each k ¥ 1. On the other hand, (1) for x � fp1q yields fpfp1q3q � fp1q3, so fp1q3 �
fp1q and fp1q � �1.

Now we insert y � x2fpxq into the given equation and using (1) we get

fpx4fpxq2q � 2x2fpxq 	 1

for each x � 0. Next, for y � x4fpxq2 we get

fpx6fpxq3q � 3x2fpxq 	 2

for all x � 0. On the other hand, substituting x2fpxq for x into (1) we get

fpx6fpxq3q � x6fpxq3

for all x � 0. Therefore

0 � x6fpxq3 � 3x2fpxq � 2 � px2fpxq 	 1q2px2fpxq � 2q,

i.e. fpxq P t� 1
x2 ,	 2

x2 u for each x � 0. Assume that fpx0q � 	 2
x2

0
for some x0 � 0. Inserting

x � x0 into the given equation yields fp	2yq � fpyq 	 3 for each y � 0, in particular,
fp	2q � 	2. However, this is a contradiction, since fp	2q P t�1

4 ,	1
2u. Thereofre fpxq � � 1

x2

for each x � 0, i.e., if fp1q � 1, then fpxq � 1
x2 for each x � 0, and if fp1q � �1, then

fpxq � � 1
x2 for each x � 0. Clearly both functions indeed satisfy the given equation.
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T-3 C
There are n students standing in line in positions 1 to n. While the teacher looks away, some
students change their positions. When the teacher looks back, they are standing in line again.
If a student who was initially in position i is now in position j, we say the student moved for
|i� j| steps. Determine the maximal sum of steps of all students that they can achieve.

Answer. n2

2 for even n and n2�1
2 for odd n

Solution 1. Let us denote xi the place of student i after switching places. Since
°n
i�1 i�xi �°n

i�1 i �
°n
i�1 xi � 0 holds, sum of summands i � xi which are negative is the same as sum of

absolute values of summands i�xi which are negative. Therefore to maximize sum
°n
i�1 |i�xi|,

it is enough to maximize sum of positive summands i � xi. Let k of summands be positive.
Then

°k
j�1 ij � xij ¤

°n
j�n�k�1 j �

°k
j�1 j � kpn � kq which is maximal when k � tn2 u with

value n2

2 for even n and n2�1
2 for odd n. This sum of movements can be achieved if students i

and n� i� 1 switch places for i � 1, . . . , tn2 u.

Solution 2. Spxq � °n
i�1 |xi � i|

For maximum define x: xi � n� 1� i, or xi � i� n
2 , or something similar:

Spxq �
ņ

i�1
|xi � i| � . . . � 2

Yn
2

] �
n�

Yn
2

]	
�
Z
n2

2

^

To show Spxq ¤
Y
n2

2

]
: define di � xi � i; if di ¥ 0 we say i moves to the right and if di   0 we

say i moves to the left. So
Spxq �

¸
i;i moves R

di �
¸

i;i moves L
di

and
0 �

¸
i

xi �
¸
i

i �
¸
i

di �
¸

i;i moves R
di �

¸
i;i moves L

di

so we need to maximize only
°
i;i moves R di. If i and j (i   j) move to the right and xi   j (the

paths of i and j do not intersect) then

|xi � i| � |xj � j|   |xj � i| � |xi � j|

So in order to maximize Spxq the paths of all indices which move to the right intersect (xi ¥ j).

On the other hand if i and j (i   j) move to the right and xi ¥ j then

|xi � i| � |xj � j| � |xj � i| � |xi � j|
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so the end points of indices moving to the right can be arbitrary permuted. So we can demand
i   j ñ xi ¡ xj. So the sum to the right equals less than pn� 1q � pn� 3q � . . . pn� 2tn2 u� 1q.
Times 2 equals . . .

Y
n2

2

]
.

Solution 3. Spxq � °n
i�1 |xi � i|

When we resolve absolute values, we get

Spxq �
¸

some i
pxi � iq �

¸
other i

pi� xiq

so
Spxq �

ņ

i�1
ai �

ņ

i�1
bi

where the numbers ai and bi are all numbers from 1 to n (twice!). So

Spxq ¤ pn� n� pn� 1q � pn� 1q � . . .� ptn2 u� 1qq � p1� 1� 2� 2� . . .� t
n� 1

2 uq

which evaluates to . . .
Y
n2

2

]
. Equality is attained when i and xi are on different sides of n�1

2 ,
for all i.
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T-4 C
Let N be a positive integer. In each of the N2 unit squares of an N �N board, one of the two
diagonals is drawn. The drawn diagonals divide the N �N board into K regions. For each N ,
determine the smallest and the largest possible values of K.

1

2

3

4

5

6

7

Example with N � 3, K � 7

Answer. The smallest K is 2N and the largest is
ZpN � 1q2 � 1

2

^
.

Solution 1. Minimum

A small triangle is a right-angled isosceles triangle whose area is 1
2 whose hypotenuse is a

diagonal of a unit square. A board segment is a horizontal or a vertical segment on the boundary
of the board. There are 4N board segments and each of these segments belongs to the boundary
of some region.

Crucial remark is that each region has either 0 or 2 board segments on its boundary. Indeed,
let R be a region that has at least one board segment on its boundary. Let us colour one such
board segment in red and then colour the small triangle whose leg is that board segment. In
each subsequent step we colour red the unique small triangle which was not coloured so far
and which has one of its legs coloured red. This process ends when the other leg of the small
triangle is also a board segment. In this way we have exhausted all small triangles of which R
consists and shown that R has exactly two board segments on its boundary.

It follows that if the number of regions is K, then there is at most 2K board segments. Thus

2K ¥ 4N ùñ K ¥ 2N.

Example with K � 2N :

Maximum

The sum of areas of all regions is constant as it is equal to the area of the board.

17
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An inner region is a region that has no board segments on its boundary. The boundary of an
inner region consists of diagonals and all of them lie on one of two parallel directions. Let us
start at some point of the boundary of an inner region and trace the boundary clockwise. In
order to return to the same point (i.e. to close the boundary) we need to change direction at
least three times, which means that there are at least four diagonals on its boundary. Each
diagonal belongs to a different small triangle, so the area of an inner region is at least 2.

If a region is not inner, then it has exactly two board segments on its boundary. If these two
segments meet at the corner of a board, then the region consists of a single small triangle and
has area 1

2 . We call such regions corner regions. If a region is not inner and not a corner region,
we call it outer. An outer region has exactly two board segments on its boundary, which are
not legs of the same small triangle, so each such region has an area at least 1. The area is
exactly 1 if the two board segments on the boundary are on the same side of the board and
share an endpoint.

The number of non inner regions is 2N , so their area is at least 4 � 1
2 �p2N � 4q � 1 � 2N � 2.

Case 1. If N is even, it is possible to make 4 corner regions and 4 � �1
2N � 1

� � 2N � 4 regions
of area 1. So, the area on non inner regions is at least 2N � 2 and the area of inner regions is
thus at most N2 � 2N � 2. It follows that there are at most 1

2pN2 � 2N � 2q inner regions, i.e.
there are at most

2N � N2 � 2N � 2
2 � pN � 1q2 � 1

2
regions when N is even.

Case 2. Let us consider the case when N is odd. If there are exactly 2 corner regions, the
total are of outer and corner regions is at least 2 � 1

2 � p2N � 2q � 1 � 2N � 1.

If there are 3 corner regions, then there are two sides of the board with 2 board segments
belonging to corner regions. These sides have an odd number of board segments belonging to
outer regions. Hence there must be an outer region which has two board segments on different
sides of the boards and its area is at least 3

2 . We see that in this case the area of all outer and
corner regions is at least 3 � 1

2 � 3
2 � p2N � 4q � 1 � 2N � 1.
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Also, if there are 4 corner regions, all four sides of the board have an odd number of board
segments belonging to outer regions, so at least 2 outer regions have area 3

2 . The total area (of
outer and corner regions) in this case is also at least 4 � 1

2 � 2 � 3
2 � p2N � 6q � 1 � 2N � 1.

If there would be no corner regions or exactly 1 corner region, then the total area of all outer
and corner regions would be at least 1 � 1

2 � p2N � 1q � 1 ¡ 2N � 1. (We could have argued that
these cases are actually impossible, but for the sake of our argument this is sufficient.)

So the area of all non inner regions is at least equal to 2N � 1. The remaining area is at most
N2 � 2N � 1 � pN � 1q2, so there are at most 1

2pN � 1q2 inner regions. This implies that there
are at most

2N � pN � 1q2
2 � pN � 1q2

2
regions when N is odd.

The following examples show that these numbers of regions can be obtained.

Example:

Answer: the smallest K is 2N and the largest is
ZpN � 1q2 � 1

2

^
.

Remark: every configuration of chosen diagonals determines a set of paths (which may even
not be paths but cycles): when you enter into a small square, you leave it on your left or on
your right (the chosen diagonal determines that). So if you start in any region, in any square,
and follow your path, only one of two possibilities happen: you leave the big square, or you
return to the starting point and the path actually is a circle (and, with a chess argument, an
even cycle). In the case where you leave the big circle, if you follow the path from the starting
point into the opposite dirrection, you cannot return to this point but you also leave the big
square so you get a path that starts and ends on the boundary of a big square.

Of course every path/circle corresponds to a region.

This approach in a way replaces the red-triangle argument from the official solution and the
proof that the smallest area of inner regions is 2.
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Solution 2. We make use of the generalized Euler’s polyhedron formula

V � F � E � C � 1

Herein V denotes the number of vertices, E the number of edges, F the number of faces (regions)
and C the number of connected components of a planar graph. We apply this formula to the
graph whose vertices are the pN � 1q2 corner points of all the N2 unit squares. The edges
are the 4N segments on the circumference and the N2 drawn diagonals. Then we get for the
number of faces (without the exterior face)

K � F � 1 � E � V � C � 4N �N2 � pN � 1q2 � C � 2N � 1� C

Since C ¥ 1 we must have K ¥ 2N . We can easily achieve C � 1 and K � 2N , for instance by
choosing all the diagonals parallel to each other. Hence 2N is the least possible value of K.

In order to find an upper bound for C we assign to every corner point its boundary distance,
i. e. the smallest distance from the four sides of the N � N square. (The corner points with
boundary distance d lie on the circumference of a square of side length N � 1 � 2d, there are
exactly pN�1�2dq2�pN�1�2dq2 � 4pN�2dq such points, except for N � 2d, in which there
is exactly one such point – the midpoint of the board.) Furthermore to a connected component
Z of the graph we assign the minimal boundary distance DpZq of the corner points contained
in Z. (Since all the corner points lie in the same connected component, there is exactly one
component Z0 such that DpZ0q � 0.) We now consider two neighbouring corner points both
having boundary distance d ¥ 1 and we observe that at least one of them must be connected
to a point with boundary distance d� 1. (Namely these two corner points are two vertices of a
unit square whose other two vertices have boundary distance d�1. The diagonal drawn in this
unit square is the desired connection.) That means that for 2d   N the number of connected
components Z with DpZq � d is at most 2pN � 2dq, i. e. half the number of corner points with
boundary number d. Now it follows that

C ¤ 1�
RpN � 1q2

2

V
, that is K ¤ 2N �

RpN � 1q2
2

V
�
RpN � 1q2

2

V
.

(Here the ceiling function takes into account the special role of the midpoint in the case 2d � N

for even N .)

In order to prove that this value of K can actually be reached, we consider the board with the
corners p0, 0q, pN, 0q, pN,Nq, p0, Nq and draw in each of the N2 unit squares that diagonal the
both endpoints of which have an odd sum of coordinates. In this case every point in the interior
of the board with even sum of coordinates, is isolated. Actually there are

Q
pN�1q2

2

U
such corner

points, i. e. z ¥ 1 �
Q
pN�1q2

2

U
. In this situation the maximal value K �

Q
pN�1q2

2

U
is actually

achieved.
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T-5 G
Let ABC be an acute triangle with AB ¡ AC. Prove that there exists a point D with the
following property: whenever two distinct points X and Y lie in the interior of ABC such that
the points B, C, X, and Y lie on a circle and

=AXB �=ACB � =CY A�=CBA

holds, the line XY passes through D.

Solution. Let D be the point on BC for which AD is a tangent to the circumcircle of ABC.
As we will show in the sequel, the point D is as desired.

Solution 1. We assume B,C,X, Y lie on a circle in that order, the other case being similar.
We compute the following equality

=AXY �=DAY � =AXB �=Y XB �=DAB �=BAY

� =AXB �=Y CB �=ACB �=BAY

� =AXB � 2=ACB �=ACY �=BAC �=Y AC

� =AXB � 2=ACB �=BAC � π �=CY A

� =AXB �=AY C �=CBA�=ACB � 0.

So AD is tangent to the circumcircle of triangle 4AXY . Consequently AD is the radical axis
of the circumcircles of triangles 4AXY and 4ABC. On the other hand BC is the radical axis
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of the circumcircles of triangles 4BCX and 4ABC. By a well known theorem the radical axis
of three circles intersect in one point, so XY passes through D.

Solution 2. Let X and Y be two points satisfying the condition mentioned in the problem and
let the line DX meet the circumcircle of triangle BXC for the second time in Y 1. It suffices to
prove that Y � Y 1.

Let us assume that the points D, X and Y 1 are collinear in this order, the other case being
similar. Due to DX � DY 1 � DB � DC � DA2 the triangles ADX and Y 1DA are similar.
Hence

=CY 1A � 360� �=AY 1D �=DY 1C � 180� �=DAX �=CBX

� p180� �=BAXq �=DAB �=CBX � =AXB �=XBA�=ACB �=CBX

� =AXB �=CBA�=ACB.

Using the condition
=AXB �=ACB � =AY 1C �=CBA

we get =AY C � =AY 1C, so Y and Y 1 lie on the same circle through A and C. On the other
hand, Y and Y 1 both lie on the circumcircle of 4BCX, therefore Y � Y 1.
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T-6 G
Let I be the incentre of triangle ABC with AB ¡ AC and let the line AI intersect the side
BC at D. Suppose that point P lies on the segment BC and satisfies PI � PD. Further,
let J be the point obtained by reflecting I over the perpendicular bisector of BC, and let Q
be the other intersection of the circumcircles of the triangles ABC and APD. Prove that
=BAQ � =CAJ .

Solution.

B

A

C

D

I

T

P

J

Q

S
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Let AI intersect the circumcircle of triangle ABC for the second time at T . It is known that T
is the centre of the circumcircle of triangle BIC and due to symmetry the point J lies on this
circle as well.

Since

=BQP � =AQP �=AQB � π �=ADP �=ACB � =DAC � =BAT � =BQT,

the points T , P , and Q are collinear.

Now let TJ intersect BC at S. We have IJ ‖ BC and the triangle JTI is isosceles, so STD is
isosceles as well. The same applies to DPI and as their base angles are both equal to

π �=ACB �=CBA

2

we must have =ITS � =IPS as well, meaning that the quadrilateral IPTS is cyclic. It follows
that =SPT � =SIT .

Their angles being equal, the triangles TAB and TBD are similar, whence

|TD|
|TB| �

|TB|
|TA|

In view of |TD| � |TS| and |TB| � |TI| � |TJ | this yields

|TS|
|TI| �

|TJ |
|TA|

which proves IS ‖ AJ . It follows that =SIT � =JAT , which in combination with the result
of our third paragraph proves

=IAQ � π �=QPD � =SPT � =JAT

.

Using =TAC � =BAI we get =JAC � =BAQ.
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T-7 N
Find all pairs of positive integers pa, bq such that

a!� b! � ab � ba.

Answer. pa, bq P tp1, 1q, p1, 2q, p2, 1qu

Solution. If a � b, the equation reduces to a! � aa. Since aa ¡ a! for a ¥ 2, the only solution
in this case is a � b � 1. If a � 1, the equation reduces to b! � b, which gives an additional
solution a � 1, b � 2. We prove a � b � 1; a � 1, b � 2 and a � 2, b � 1 are the only solution
of the Diophantine equation.

Assume a, b is another solution satisfying 1   a   b (the case 1   b   a is symmetric). This
implies a|b! and consequently a|ba. Let p be a prime factor of a. By just argued, also p|b. We
compare the exponent of p in prime factorizations of both sides of the equation. LHS of the
equation can be rewritten as a!p b!

a! � 1q. Since p|b and b ¡ a we have p| b!
a! and hence, b!

a! � 1 is
coprime to p. Thus, the exponent in prime factorization of LHS equals the exponent of p in
prime factorization of a!. It is well know, that this equals

8̧

k�1

Z
a

pk

^
�
Z
a

p

^
�
Z
a

p2

^
�
Z
a

p3

^
� . . .

We have
°8
k�1

Y
a
pk

]
  a

p
� a

p2 � � � � � ap 1
p�1q ¤ a. The exponent of p in prime factorization of

RHS is however at least a since p|a, p|b and b ¡ a. This contradicts the assumption that a, b is
a solution. Therefore there are no solutions to the equation, when a, b ¥ 2.
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T-8 N
Let n ¥ 2 be an integer. Determine the number of positive integers m such that m ¤ n and
m2 � 1 is divisible by n.

Answer. Dp2α0pα1
1 pα2

2 � � � pαk
k q � 2k

Solution 1. Let Dpnq be the number of positive integers m such that m ¤ n and m2 � 1 is
divisible by n.

No number of the form m2 � 1 is divisible by 4, so if 4 divides n, we have Dpnq � 0. It is
also known that Dpnq � 0 if n is divisible by some number of the form 4k � 3. Furthermore,
Dp2q � 1.

1. Assume first that n � p is an odd prime of the form 4k � 1. We show that Dppq � 2.

Lemma: If p � 4k � 1, where k is a positive integer and p is a prime number, and
if S � tx1, ..., xpu is a complete residue system modulo p, then there exist exactly two
elements x P S for which x2 � �1 pmod pq.
First, we will prove that congruence equation x2 � �1 pmod pq has at least one solution
if p � 1 pmod 4q.
Using Wilson’s theorem, we have
�

1 � 2 � � � p� 1
2



�
�
pp� 1qpp� 2q � � � �p� p� 1

2
�
 �

��p� 1
2

�
!

2

� �1 pmod pq

thus x � �
p�1

2

�
! is a solution.

Furthermore, if xi P S is a solution then xj � p� xi P S is also a solution. If p � 2q � 1,
exactly one of the numbers xi, xj is smaller than or equal to q. We can assume that
xi ¤ q. If given congruence equation had another solution xk P S, we could, by the same
argument, assume that xk ¤ q. However, x2

i � x2
k � �1 pmod pq implies that p divides

pxk � xiqpxk � xiq, which is impossible since xi, xk ¤ q.

This completes the proof of lemma.

2. Now let n � pk be a prime power where p is congruent to 1 modulo 4. We will prove by
induction that Dppkq � 2.

Induction basis, the case for k � 1, is the previous step.

Assume that Dppkq � 2 for some positive integer k.

Let i and j be those two integers less then pk such that i2 � 1 and j2 � 1 are divisible by
pk.
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Then all numbers less then pk�1 that satisfy congruence equation x2 � �1 pmod pkq are
the following numbers:

mpk � i, for m � 0, . . . , p� 1 and mpk � j, for m � 0, . . . , p� 1.

Exactly one of the numbers pmpk�iq2�1
pk (for m � 0, . . . , p� 1) is divisible by p, i.e. exactly

one among numbers pmpk � iq2 � 1 (for m � 0, . . . , p� 1) is divisible by pk�1).

To prove that, assume the opposite – that there are two such numbers, namely pm1p
k �

iq2 � 1 and pm2p
k � iq2 � 1. This means that number

pm1p
k � iq2 � 1
pk

� pm2p
k � iq2 � 1
pk

�pm1p
k � i�m2p

k � iqpm1p
k � i�m2p

k � iq
pk

�pm1 �m2qppkpm1 �m2q � 2iq

is divisible by p which is impossible because neither m1 �m2 nor i are divisible by p.

In the same way, we conclude that exactly one of the numbers pmpk � jq2 � 1 (for m �
0, . . . , p� 1) is divisible by pk�1.

Therefore, Dppk�1q � 2.

3. Next, assume that n � paqb where p and q are two distinct prime numbers of the form
4k � 1, for positive integers k, then Dppaqbq � 4 for all positive integers a and b.

According to above, Dppaq � 2.

Let i and j be those two positive integers smaller than pa such that i2 � 1 and j2 � 1 are
both divisible by pa.

All numbers smaller than paqb that satisfy congruence equation x2 � �1 pmod paq are
the following:

mpa � i for m � 0, ..., qb � 1 and mpa � j for m � 0, ..., qb � 1.

Since t0, 1, 2, . . . , qb � 1u is a complete residue system modulo qb, the same is true for
t0, pa, 2pa, . . . , pqb � 1qpau (because pa and qb are relatively prime), hence T � ti, pa �
i, 2pa � i, . . . , pqb � 1qpk � iu is a complete residue system modulo qb, as well.

Lemma implies that there are exactly two elements of the set T that satisfy the congruence
equation x2 � �1 pmod qbq.
In the same way, there are exactly two elements of the tj, pa� j, 2pa� j, ..., pqb�1qpa� ju
that satisfy congruence equation x2 � �1 pmod qbq.
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Therefore, Dppaqbq � 4.

Using the previous part inductively, we conclude that D
�
pα1

1 � � � pαn
n

� � 2n for distinct odd
prime numbers pi, i � 1, 2, . . . , n.

4. Finally, we show that D
�
pα1

1 � � � pαn
n

� � D
�
2pα1

1 � � � pαn
n

�
, if pi, i � 1, 2, . . . , n are distinct

odd prime numbers, all congruent to 1 modulo 4.

Let a � pα1
1 � � � pαn

n .

If i1, i2, i3, . . . i2n are all positive integers less than a that satisfy congruence equation
x2 � �1 pmod aq, then all positive integers less than 2a that satisfy that equation are
the following:

δa� ij, j � 1, 2, 3, . . . , 2n for δ � 0, 1.

However, exactly one of the number i2j � 1 and pa � ijq2 � 1 is even, which implies that
D
�
pα1

1 � � � pαn
n

� � D
�
2pα1

1 � � � pαn
n

�
.

Thus we conclude that
D
�
pα1

1 � � � pαn
n

� � D
�
2pα1

1 � � � pαn
n

� � 2n,

for distinct odd prime numbers pi, i � 1, 2, . . . , n.

Solution 2. No number of the formm2�1 is divisible by 4, so if 4 divides n, we have Dpnq � 0.
Also Dp2q � 1.

Write n � pα0
0 pα1

1 � � � pαk
k with p0 � 2, α0 P t0, 1u and pi odd and αi ¥ 1 for i ¥ 1.

The problem is to find the number of residue classes m modulo n with m2 � �1 pmod nq.
It is clear that, m2 � �1 pmod nq if and only if m2 � �1 pmod pαi

i q for all i.
We use the following lemma.

Lemma: Let p be a prime number and α ¥ 1. Then the number of residue classesm fulfilling

m2 � �1 pmod pαq

equals $'''&
'''%

0 if p � 3 pmod 4q,
1 if pα � 2,
2 if p � 1 pmod 4q.

Proof of lemma: For pα � 2, there is nothing to show. It is well-known that �1 is a quadratic
residue modulo an odd prime p if and only if p � 1 pmod 4q. We now assume p � 1 pmod 4q.
It is also known (Hensel lifting) that if some b is a quadratic residue modulo some odd prime
p, then b is also a quadratic residue modulo pα.
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Thus there is at least one residue class m with m2 � �1 pmod pαq. Another residue class
r is also a solution r2 � �1 pmod pαq if and only if m2 � r2 pmod pαq or equivalently pα |
pm � rqpm � rq. We have gcdpm � r,m � rq | 2m which is coprime to pα. Thus r � �m
pmod pαq.
Thus m2 � �1 pmod pαq has exactly two solutions. This proves the lemma.

By the lemma, α0 does not influence the result. For each 1 ¤ i ¤ k, there are two choices for
m modulo pαi

i , thus there are 2k choices for m modulo n by the Chinese remainder theorem.
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