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MEMO 2020 Algebra I-1

I-1
Let N be the set of positive integers. Determine all positive integers k for which there exist
functions f : N → N and g : N → N such that g assumes infinitely many values and such that

f g(n)(n) = f(n) + k

holds for every positive integer n.

(Remark. Here, f i denotes the function f applied i times, i.e., f i(j) = f(f(. . . f(f︸ ︷︷ ︸
i times

(j)) . . .)).)

Answer. Such functions exist if and only if k ≥ 2.

Solution 1. Suppose that k = 1 and that f and g satisfy the desired conditions.

Claim. There exist no positive integers m and n with fm(n) = n.

Proof. Suppose that fm(n) = n for some positive integers m and n. Consider the orbit of n,
i.e. the set A = {f(n), f 2(n), . . . , fm−1(n), fm(n)}. Clearly, f r(n) ∈ A for all integers r ≥ 0.
Let t = f s(n) = max A and denote u = f s+m−1(n) so that f(u) = t. Then t + 1 = f(u) + 1 =
f g(u)(u) = f g(u)+s+m−1(n) ∈ A, contradicting t = max A.

Claim. f(n) ≥ n + 1 for all positive integers n.

Proof. Suppose there exists a positive integer n with f(n) ≤ n.

We show inductively that for each integers r ≥ 0 there exists an integer s ≥ 1 with f s(n) =
f(n) + r. For r = 0 take s = 1. Induction step: Suppose that f s(n) = f(n) + r for some integer
s ≥ 1. Denote t = f s−1(n) and note that f(n) + r + 1 = f s(n) + 1 = f(t) + 1 = f g(t)(t) =
f g(t)+s−1(n), hence s′ = g(t) + s − 1 ≥ 1 works for r + 1.

In particular, setting r = n − f(n) ≥ 0 we see that f s(n) = n for some s ≥ 1. This contradicts
the previous claim.

Now, for all positive integers m and n we obtain

fm(n) ≥ fm−1(n) + 1 ≥ . . . ≥ f(n) + m − 1.

Set m = g(n). We obtain f(n) + 1 = f g(n)(n) ≥ f(n) + g(n) − 1, hence g(n) ≤ 2 for all n. This
contradicts the assumption that g is unbounded.

Now, let k ≥ 2. We construct f and g satisfying desired conditions.
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MEMO 2020 Algebra I-1

Let n1 < n2 < n3 < . . . be the sequence consisting of all positive integers not divisible by k

(i.e. ni(k−1)+j = ik + j for any i ≥ 0, j ∈ {1, 2, . . . , k − 1}). Consider the sequence

k, n1, 2k, n2, n3, n4, 3k, n5, . . . , n9, 4k, n10, . . . , n16, 5k, . . . , ik, n(i−1)2+1, . . . , ni2 , (i + 1)k, . . . .

Note that every positive integer occurs in this sequence exactly once and for every n the number
n+k appears after n. For every n let f(n) be the successor of n in this sequence and let g(n) be
the number of terms in this sequence between f(n) and f(n)+k (inclusive — we count f(n) and
f(n)+k as well). By previous remarks, f and g are well defined and satisfy f g(n)(n) = f(n)+k.
Moreover, g(ni2) = 2i + 3 for any i, hence g is unbounded.

Solution 2. We will prove that if k = 1 then g is necessarily bounded.

The given equation implies that if m = f(n) is in the image of f then m + 1 = f(n) + 1 =
f(f g(n)−1(n)) is in the image of f as well. Let f(a) be the minimum of the image of f . Then
the image of f is equal to {f(a), f(a) + 1, . . .}.

However, an easy inductive argument shows that for every m the number f(a) + m is of the
form fn(a). Hence the set {f(a), f 2(a), . . .} is also equal to the image of f .

If fx(a) = f y(a) for some x > y, then the sequence an = fn(a) is eventually periodic with a
period x − y, but then the set {f(a), f 2(a), . . .} is finite, which is a contradiction.

Therefore, for every n ∈ N0, there exists a unique positive integer xn such that fxn(a) = n+f(a),
and conversely, for all x ≥ 1 the number fx(a) is of the form m + f(a) for some m ≥ 0. In
other words, the map N0 ∋ n 7→ xn ∈ N is bijective.

Furthermore, fxn+1(a) = (f(a)+n)+1 = fxn(a)+1 = f(fxn−1(a))+1 = f g(fxn−1(a))(fxn−1(a)) =
fxn−1+g(fxn−1(a))(a), which implies xn+1 = xn − 1 + g(fxn−1(a)) > xn, since g(t) > 1 for all t.

Therefore, the map n 7→ xn is a strictly increasing bijection from N0 to N which gives xn = n+1
for all n. Thus fn+1(a) = f(a) + n, which implies f(f(n)) = f(n) + 1 for all n ∈ N, hence
g(n) = 2 for all n ∈ N. Obviously, this means g is bounded.

Suppose now that k ≥ 2. We will give an explicit example of functions f and g satisfying
required properties.

• For each positive integer n, let f(kn) = nk + 1 and let f(nk + 1) = kn + 2.

• For each positive integer a which is not a power of k, let f(ak) = ak + 2.

• For any other positive integer x, let f(x) = x + 1.
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In other words: We take the sequence of all positive integers 1, 2, 3, . . . , remove from it all
numbers congruent to 1 modulo k except for 1 itself, then insert them again a bit later, with
each nk +1 occurring directly after kn. That is, we get the sequence (shown here for a k ≥ 4)

1, 2, . . . , k, k+1, k+2, . . . , 2k, 2k+2, . . . , 3k, 3k+2, . . . , k2, 2k+1, k2+2, . . . , k3, 3k+1, k3+2, . . . ,

and for every n we let f(n) be the successor of n in this sequence.

For example in the case k = 2, we get the sequence

1, 2, 3, 4, 5, 6, 8, 7, 10, 12, 14, 16, 9, 18, 20, . . . , 32, 11, 34 . . .

and in the case k = 5, we get the sequence

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 11, 27, 28, 29, 30, 32, 33, . . . ,

with the powers of k highlighted in each case.

Like in the first solution we note that for every n the number n+k appears after n, so we again
define g(n) as the number of terms in the sequence between f(n) and f(n) + k (inclusively), or
equivalently, define g(n) to be the smallest m such that fm(n) = f(n) + k.

Now, g(kn) (denoting the distance between f(kn) = nk + 1 and f(kn) + k = nk + 1 + k =
(n + 1)k + 1 = f(kn+1) which occur after kn and kn+1, respectively) is equal to two plus the
number of integers i such that kn + 2 ≤ i ≤ kn+1 and i is not congruent to 1 modulo k. For
easier calculation we note that this is equivalent to the amount of integers i with kn < i ≤ kn+1

and i not congruent to 1 modulo k, and observe that there exist exactly

(kn+1 − kn) · k − 1
k

= (kn − kn−1) · (k − 1) = kn−1 · (k − 1)2

such numbers, which grows arbitrarily large for sufficiently large n. Therefore, g is also un-
bounded.

A note on possible constructions. The two shown constructions share a common idea that
can be generalized further: Taking the sequence of all positive integers, removing any one
residue class modulo k, and sprinkling it back in at increasingly large distances will always
result in functions f and g with the desired properties.
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MEMO 2020 Combinatorics I-2

I-2
We call a positive integer N contagious if there exist 1000 consecutive non-negative integers
such that the sum of all their digits is N . Find all contagious positive integers.

Answer. All N ≥ 13500.

Any solution naturally splits into two parts:

Part 1: Showing that no N < 13500 is contagious.

Part 2: Showing that all N ≥ 13500 are contagious.

We present one approach to Part 1 and three approaches to Part 2 (by direct construction, by
induction, and by discrete continuity).

Part 1. We make the following observation:

(T) Consider a block of 1000 consecutive non-negative integers. Then the last three digits of
those numbers (prepended by zeros if needed) form a set {000, 001, . . . , 999}.

Thus, given any such block, the sum of the last three digits alone equals 3·100·(0+1+· · ·+9) =
13500 (since each of the digits 0, 1, . . . , 9 occurs 100 times in each of the 3 positions). Therefore
no integer less than 13500 is contagious.

Part 2, by direct construction. Fix N ≥ 13500 and write the “remaining” digit sum as
N − 13500 = d · 1000 + r, where d ≥ 0 and r ∈ [0, 999] are non-negative integers. Write
r = r2r1r0 as a 3-digit number (prepended by zeros if needed). Consider a number

X = 11 . . . 1︸ ︷︷ ︸
d times

r2r1r0

formed by concatenating d copies of the digit 1 and the digits r2, r1, r0. (If d = 0 set X = r.) We
claim that the total digit sum of the 1000 consecutive non-negative integers X, X+1, . . . , X+999
equals N . Note that:

(a) Ignoring the last three digits, the 1000 − r numbers X, . . . , X + (999 − r) have digit
sum d · 1 = d each and the next r numbers X + (1000 − r), . . . , X + 999 have digit sum
(d − 1) · 1 + 2 = d + 1 each.

(b) As in Part 1, the last three digits of all the 1000 numbers add up to 13500.
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Therefore, all in all, we obtain that the total digit sum of X, X + 1, . . . , X + 999 equals

(1000 − r) · d + r · (d + 1) + 13500 = 1000d + r + 13500 = N,

as required.

Part 2, by induction. Given a non-negative integer n, denote by sn the digit sum of n and
by S(n) the total digit sum of n, n + 1, . . . , n + 999, that is,

S(n) = sn + sn+1 + · · · + sn+999.

We proceed by induction. As a first step, we show that the 1000 numbers N ∈ {13500, . . . , 14499}
are all contagious. As a second step, we show that if N is contagious, then N + 1000 is conta-
gious. Combined, this implies that all N ≥ 13500 are contagious.

For the first step, note that for any integer n ≥ 0 we have

S(n + 1) − S(n) = (sn+1 + · · · + sn+1000) − (sn + · · · + sn+999) = sn+1000 − sn.

Thus, for 0 ≤ X ≤ 999, we have S(X + 1) = S(X) + 1, since the number X + 1000 has an
extra digit 1 in front of the (up to three-digit) number X. Since S(0) = 13500 by Part 1, we
get S(X) = 13500 + X for 0 ≤ X ≤ 999. Therefore all N ∈ {13500, . . . , 14499} are indeed
contagious.

For the second step, suppose that N is contagious, that is, there exist 1000 consecutive integers
X, X + 1, . . . , X + 999 with total digit sum N . Take any integer i such that 10i > X + 999.
Then the 1000 consecutive integers

10i + X, 10i + X + 1, . . . , 10i + X + 999

have a total digit sum equal to N + 1000 (since each number got an extra digit 1 and, possibly,
several zeroes).

Part 2, by discrete continuity. We make three observations:

(A) For any integer n ≥ 0, we have S(n + 1) − S(n) ≤ 1.

• Indeed, as before, we have

S(n + 1) − S(n) = (sn+1 + · · · + sn+1000) − (sn + · · · + sn+999) = sn+1000 − sn.

Note that the numbers n+1000 and n have the same last three digits. We distinguish
two cases:
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a) If the fourth digit of n from the right is less than 9, then the digits of n + 1000
and n differ only in that position and we have sn+1000 − sn = 1. (If n is 3-digit,
this is true too.)

b) Otherwise, suppose that there are d ≥ 1 consecutive digits 9 just in front of the
last three digits of n. Then sn+1000 − sn = 1 − 9d < 1, because the resulting
number will have d zeroes in place of the nines, and the digit to the left of the
nines increased by one.

(B) We have S(0) = 13500.

• By the same argument as in Part 1 we get S(0) = 3 · 100 · (0 + 1 + · · · + 9) = 13500.

(C) The sequence S(n) is unbounded as n → ∞.

• For instance, setting n = 10k − 1 we get S(n) ≥ sn = 9k.

It remains to put the observations together. By (B), the number n = 13500 is contagious. Now
fix N ≥ 13501. Since the sequence (S(n))∞

n=0 is unbounded, there exists an integer k ≥ 1 such
that S(k) ≥ N . Take the smallest such k. By minimality of k we have S(k − 1) ≤ N − 1.
Combining this with (A) we now deduce

N ≤ S(k) ≤ 1 + S(k − 1) ≤ 1 + (N − 1) = N,

hence S(k) = N implying that N is contagious.
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MEMO 2020 Geometry I-3

I-3
Let ABC be an acute scalene triangle with circumcircle ω and incenter I. Suppose the ortho-
center H of BIC lies inside ω. Let M be the midpoint of the longer arc BC of ω. Let N be
the midpoint of the shorter arc AM of ω.

Prove that there exists a circle tangent to ω at N and tangent to the circumcircles of BHI and
CHI.

Solution 1. Denote the circumcircles of BHI and CHI by ω1 and ω2 and their centers by O1

and O2, respectively. Let O be the center of ω. Let R be the radius of ω.

Since H is the orthocenter of triangle BIC it follows that I is the orthocenter of triangle BHC.

Therefore

∠HIB = 180◦ − (∠BHI +∠IBH) = 180◦ − (90◦ −∠CBH + 90◦ −∠BHC) = 180◦ −∠HCB,

and analogously we get ∠CIH = 180◦ − ∠CBH and ∠BIC = 180◦ − ∠BHC.

Denote by r the radius of circle ω1, then from sine law we get

2r = HB

sin∠HIB
= HB

sin(180◦ − ∠HIB) = HB

sin∠HCB
=

= diameter of circumcircle of the triangle BHC.

Using the same argument for triangles CIH and BIC we see that r is equal to radii of ω1, ω2,
circumcircles of BIC and BHC.

From the following angle chase it follows that

∠BHC = 180◦ − ∠BIC = 180◦ −
Å

180◦ − 1
2∠CBA − 1

2∠BCA

ã
=

= 1
2(∠CBA + ∠BCA) = 90◦ − 1

2∠BAC.

Since H lies inside ω and ∠BAC is acute we conclude that

∠BAC < ∠BHC = 90◦ − 1
2∠BAC < 90◦

so
2r = diameter of circumcircle of BHC = BC

sin∠BHC
<

BC

sin∠BAC
= 2R,

thus r < R.

10
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Let ∠BAC = α, ∠CBA = β, ∠ACB = γ. Then

∠BO1I = 2∠BHI = 2(90◦ − ∠CBH) = 2∠ICB = γ,

so
∠IBO1 = 90◦ − 1

2∠BO1I = 90◦ − γ

2 = α + β

2 ,

and finally
∠ABO1 = ∠IBO1 − ∠IBA = α + β

2 − β

2 = α

2 = ∠BAI.

This shows that BO1 ∥ AI, and moreover, rays BO→
1 , AI→ determine opposite directions.

Similarly, rays CO→
2 , AI→ are parallel and determine opposite directions. Therefore these rays

are parallel and BO→
1 , CO→

2 determine the same direction. Since BO1 = r = CO2, it follows
that vectors −−→

BO1,
−−→
CO2 are equal. Denote this vector by −→v .

A

B C

I

H

O

O1
O2

X

M
N

Note that ON ⊥ AM . Moreover

∠IAM = ∠IAC + ∠CAM = ∠IAC + ∠CBM =

= ∠IAC + 1
2(180◦ − ∠BMC) = ∠IAC + 1

2(180◦ − ∠BAC) = 90◦,

11
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so AM ⊥ AI, hence ON ∥ AI ∥ BO1 ∥ −→v . Let X be a point such that −−→
OX = −→v . Since

ON ∥ −→v , X lies on line ON . It actually lies on ray ON→ since rays ON→, AI→ determine
opposite directions.

Note that translation by −→v maps triangle BCO to triangle O1O2X. Therefore O1X = BO = R

and O2X = CO = R.

Let ω′ be the circle centered at X with radius R − r > 0.

Observe that O1X = R = r + (R − r), so ω′ is tangent externally to ω1. For similar reason it
is tangent externally to ω2. Moreover OX = r = R − (R − r) = ON − XN , so ω′ is tangent to
ω internally at point N .

Solution 2. Let β := ∠ABI = ∠IBC and γ := ∠BCI = ∠ICA. Without loss of generality,
we assume that β > γ. Furthermore, we define P to be the intersection of NB and the
circumcircle of BHI and Q to be the intersection of NC and the circumcircle of CHI.

A

B C

H

I

M
N

P Q
X

Y

Z D

Our goal is to prove that the circumcircle of NPQ satisfies the desired conditions. To this end,
define the tangent tN to ω through N , tangent tP to the circumcircle of BHI through P and
tangent tQ to the circumcircle of CHI through Q. Let X be the intersection of tP and tQ, Y the
intersection of tN and tQ and Z the intersection of tN and tP . If we can prove that PX = QX,
NY = QY and NZ = PZ, it follows that the circumcircle of NPQ is the incircle of XY Z and
N, P and Q are the contact points. By definition of tN , tP and tQ, this would imply that the
circumcircle of NPQ satisfies the desired properties.

12
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Using that the arcs MN and NA have the same lengths and the triangle BMC is isosceles, we
calculate some angles:

∠ACN = ∠ABN = 1
2∠ABM

= 1
2(∠ABC − ∠MBC)

= 1
2

Å
2β − 180◦ − ∠CMB

2

ã
= 1

2

Å
2β − 180◦ − (180◦ − 2β − 2γ)

2

ã
= 1

2(β − γ).

Furthermore, using that H is the orthocenter of BIC and has to lie outside of it but inside ω,
we compute

∠ICQ = ∠ICA + ∠ACN = γ + 1
2(β − γ) = 1

2(β + γ),

∠PBI = ∠ABI − ∠ABN = β − 1
2(β − γ) = 1

2(β + γ),

∠BCH = 90◦ − ∠IBC = 90◦ − β

∠HIQ = ∠HCQ

= ∠BCI + ∠ICQ − ∠BCH

= γ + 1
2(β + γ) − (90◦ − β)

= 1
2(3β + 3γ − 180◦).

By an analogous computation, we find that

∠PIH = 1
2(3β + 3γ − 180◦).

If we now define X ′ as the intersection of tP and HI as well as X ′′ the intersection of tQ and
HI, we obtain by tangency:

∠X ′PI = 1
2∠PBI = 1

2(β + γ) = 1
2∠ICQ = ∠IQX ′′.

Since also
∠PIX ′ = ∠PIH = 1

2(3β + 3γ − 180◦) = ∠HIQ = ∠X ′′IQ,

we get two similar triangles X ′PI and X ′′QI. Also, since HI is the power line of the circum-
circles of BHI and CHI, we have

X ′P 2 = X ′H · X ′I, X ′′Q2 = X ′′H · X ′′I,

13
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and hence
X ′H · X ′I

X ′′H · X ′′I
=
Å

X ′P

X ′′Q

ã2
=
Å

X ′I

X ′′I

ã2
,

using similarity. By simplifying those terms, we get

X ′H

X ′′H
= X ′I

X ′′I
= X ′H + HI

X ′′H + HI
,

hence X ′H · HI = X ′′H · HI and therefore X ′H = X ′′H, which implies that X ′ = X ′′ = X.
By the power of X to BHI and CHI, we finally get XP 2 = XQ2, so XP = XQ as desired.

To see that NY = QY , define D as the second intersection of the circumcircles of CHI and
ABC and let Y ′ be the intersection of CD and tN . We want to show that Y ′ = Y . Using that
∠CQI = ∠CHI = 90◦ − ∠BCH = 90◦ − (90◦ − ∠IBC) = β, we compute

∠QDY ′ = 180◦ − ∠CDQ

= ∠QIC

= 180◦ − ∠CQI − ∠ICQ

= 180◦ − β − 1
2(β + γ).

On the other hand, the tangency to ω at N yields

∠Y ′NQ = ∠Y ′NC = ∠NBC = ∠IBC + ∠NBI = β + 1
2(β + γ).

Now, since ∠QDY ′ + ∠Y ′NQ = 180◦, we conclude that NQDY ′ is a cyclic quadrilateral. The
same is true for NQDY because of

∠Y ND = ∠NCD = ∠QCD = ∠Y QD,

where we used tangency of tN to ω and of tQ to the circumcircle of CHI. Since both Y and
Y ′ lie on tN , they have to be the same point. Since CD is the power line of circle ω and
the circumcircle of CHI, we obtain Y Q2 = Y N2, so QY = NY . We can find a completely
analogous argument for PZ = NZ to conclude.

14
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I-4
Find all positive integers n for which there exist positive integers x1, x2, . . . , xn such that

1
x2

1
+ 2

x2
2

+ 4
x2

3
+ · · · + 2n−1

x2
n

= 1.

Answer. Solutions exist for all positive integers n except for n = 2.

Solution 1.

• n = 1:

Here, x1 := 1 provides a solution, since

1
12 = 1 .

• n = 2:

Here, no solution exists. Indeed, x1 = 1 or x2 = 1 yields 1
x2

1
+ 2

x2
2

> 1, while x1, x2 ≥ 2
leads to

1
x2

1
+ 2

x2
2

≤ 1
4 + 2

4 = 3
4 < 1 .

• n = 4:

Here, (x1, x2, x3, x4) := (3, 3, 3, 6) provides a solution, since

1
32 + 2

32 + 4
32 + 8

62 = 7
9 + 8

36 = 7
9 + 2

9 = 1 .

• Induction step from n to (n + 2):

Let (y1, y2, . . . , yn) be a solution for n, i.e.,

1
y2

1
+ 2

y2
2

+ 4
y2

3
+ · · · + 2n−1

y2
n

= 1 .

Then
(x1, x2, . . . , xn+2) := (2, 2, 4y1, 4y2, . . . , 4yn)

15
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is a solution for (n + 2), since

1
x2

1
+ 2

x2
2

+ 4
x2

3
+ · · · + 2n+1

x2
n+2

= 1
22 + 2

22 + 4
(4y1)2 + · · · + 2n+1

(4yn)2

= 1
4 + 2

4 + 4
16

ï 1
(y1)2 + · · · + 2n−1

(yn)2

ò
= 3

4 + 1
4 · 1

= 1 .

Using this induction step and the solutions for n = 1 and n = 4, we can construct
solutions for all n ≥ 3.

Solution 1a. There are other induction steps possible. For example from n to (n + 3):

Let (y1, y2, . . . , yn) be a solution for n, i.e.,

1
y2

1
+ 2

y2
2

+ 4
y2

3
+ · · · + 2n−1

y2
n

= 1 .

Then
(x1, x2, . . . , xn+3) := (3, 3, 3, 6y1, 6y2, . . . , 6yn)

is a solution for (n + 3), since

1
x2

1
+ 2

x2
2

+ 4
x2

3
+ · · · + 2n+2

x2
n+3

= 1
32 + 2

32 + 4
32 + 8

(6y1)2 + · · · + 2n+2

(6yn)2

= 1
9 + 2

9 + 4
9 + 8

36

ï 1
(y1)2 + · · · + 2n−1

(yn)2

ò
= 7

9 + 2
9 · 1

= 1 .

In order to complete this approach, of course, solutions have to be provided for n = 1, 3,
and 5.

In fact, every solution (z1, . . . , zk) for k yields an induction step from n to (n + k − 1). Indeed,
if (y1, . . . , yn) is a solution then

(z1, . . . , zk−1, zk · y1, . . . , zk · yn)

is a solution, too. The two constructions presented above belong to (2, 2, 4) and (3, 3, 3, 6).

So it is conceivable that someone finds an induction from n to, say, (n+6). In this case, solutions
for six suitable small values of n would be necessary in order to complete the approach.
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Solution 2. As in the previous solution, we can show that there does not exist a solution for
n = 2 and find explicit solutions for n = 1 and n = 3.

We construct further solutions by induction. Let (y1, y2, . . . , yn) be a solution for n ≥ 3.

Then setting xn−2 = xn+1 := 3yn−2 and xi := yi for all other i is a solution for n + 1, since
for the sum of the terms corresponding to xn−2 and xn+1 (which are the only ones that differ
between the solutions for n and n + 1) we get

2n−3

x2
n−2

+ 2n

x2
n+1

= 2n−3

9y2
n−2

+ 2n

9y2
n−2

= (1 + 8) · 2n−3

9y2
n−2

= 2n−3

y2
n−2

,

thereby keeping the sum of all terms equal.

Solution 3. As in the other solutions, we can show that there does not exist a solution for
n = 2. Also, we can find explicit solutions for n = 4, n = 6 and n = 8. Now we prove that we
can find suitable integers for all other n:

For n = 2k + 1 (where k is a suitable non-negative integer), we can choose

x1 = · · · = xn−1 = 2k, xn = 22k

to obtain
n∑

i=1

2i−1

x2
i

=
2k∑

i=1

2i−1

22k
+ 22k

24k
=

22k−1
2−1
22k

+ 1
22k

= 1.

For n = 2k with an integer k ≥ 5, observe that, by setting xi = 2 i−1
2 for odd i and xi = 2 i

2 −1

for even i, we have

2k∑
i=1

2i−1

x2
i

=
k∑

j=1

Å22j−2

22j−2 + 22j−1

22j−2

ã
=

k∑
j=1

(1 + 2) = 3k.

If we can modify the xi in order to obtain some square number m2 on the right hand side, we
can in a second step multiply each xi by m to obtain a sum of 1.

Observe that all xi for i > 2 are even. We show that there is a square divisible by 3 that can
be obtained by replacing some of the xi (with i > 2) by x′

i := xi/2:

Note that for odd i, this increases the sum by 4−1 = 3 and for even i, this increases the sum by
8−2 = 6. Since there are k−1 odd and k−1 even indexes to choose from, we can increase the sum
by every number l that is divisible by three and satisfies 0 ≤ l ≤ 3(k −1)+6(k −1) = 9k −9.

Because of k ≥ 5 and therefore
√

3k < k, the smallest square m2 ≥ 3k which is divisible by 3
certainly satisfies

(
√

3k)2 = 3k ≤ m2 ≤ (
√

3k + 3)2 = 3k + 6
√

3k + 9 < 9k + 9.
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In particular, m2 ≤ 9k+6 because m is divisible by 3. This means that in order to increase 3k to
m2, we have to add a number between 0 and 6k +6 to the sum above. However, 6k +6 ≤ 9k −9
because k ≥ 5 and by the above argument, we can always do that.

To summarize, we first set the xi as above, then select up to 2k − 2 of them to be divided by
2, then multiply all of them by m, yielding a right hand side of 1.
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