Day 1. Solutions

Problem 1 (Netherlands). Find all triples (a, b, c) of real numbers such that $a b+b c+$ $c a=1$ and

$$
a^{2} b+c=b^{2} c+a=c^{2} a+b
$$

Solution 1. First suppose that $a=0$. Then we have $b c=1$ and $c=b^{2} c=b$. So $b=c$, which implies $b^{2}=1$ and hence $b= \pm 1$. This leads to the solutions $(a, b, c)=(0,1,1)$ and $(a, b, c)=(0,-1,-1)$. Similarly, $b=0$ gives the solutions $(a, b, c)=(1,0,1)$ and $(a, b, c)=(-1,0,-1)$, while $c=0$ gives $(a, b, c)=(1,1,0)$ and $(a, b, c)=(-1,-1,0)$.
Now we may assume that $a, b, c \neq=0$. We multiply $a b+b c+c a=1$ by a to find $a^{2} b+a b c+c a^{2}=a$, hence $a^{2} b=a-a b c-a^{2} c$. Substituting this in $a^{2} b+c=b^{2} c+a$ yields $a-a b c-a^{2} c+c=b^{2} c+a$, so $b^{2} c+a b c+a^{2} c=c$. As $c \neq=0$, we find $b^{2}+a b+a^{2}=1$.

Analogously we have $b^{2}+b c+c^{2}=1$ and $a^{2}+a c+c^{2}=1$. Adding these three equations yields $2\left(a^{2}+b^{2}+c^{2}\right)+a b+b c+c a=3$, which implies $a^{2}+b^{2}+c^{2}=1$. Combining this result with $b^{2}+a b+a^{2}=1$, we get $1-a b=1-c^{2}$, so $c^{2}=a b$.

Analogously we also have $b^{2}=a c$ and $a^{2}=b c$. In particular we now have that $a b, b c$ and $c a$ are all positive. This means that a, b and c must all be positive or all be negative. Now assume that $|c|$ is the largest among $|a|,|b|$ and $|c|$, then $c^{2} \geq|a b|=a b=c^{2}$, so we must have equality. This means that $|c|=|a|$ and $|c|=|b|$. Since (a, b, c) must all have the same sign, we find $a=b=c$. Now we have $3 a^{2}=1$, hence $a= \pm \frac{1}{3} \sqrt{3}$. We find the solutions $(a, b, c)=\left(\frac{1}{3} \sqrt{3}, \frac{1}{3} \sqrt{3}, \frac{1}{3} \sqrt{3}\right)$ and $(a, b, c)=\left(-\frac{1}{3} \sqrt{3},-\frac{1}{3} \sqrt{3},-\frac{1}{3} \sqrt{3}\right)$.

We conclude that all possible triples (a, b, c) are $(0,1,1),(0,-1,-1),(1,0,1),(-1,0,-1)$, $(1,1,0),(-1,-1,0),\left(\frac{1}{3} \sqrt{3}, \frac{1}{3} \sqrt{3}, \frac{1}{3} \sqrt{3}\right)$ and $\left(-\frac{1}{3} \sqrt{3},-\frac{1}{3} \sqrt{3},-\frac{1}{3} \sqrt{3}\right)$.
Solution 2. From the problem statement $a b=1-b c-c a$ and thus $b^{2} c+a=a^{2} b+c=$ $a-a b c-a^{2} c+c, c\left(b^{2}+a^{2}+a b-1\right)=0$. If $c=0$ then $a b=1$ and $a^{2} b=b$, which implies $a=b= \pm 1$. Otherwise $b^{2}+a^{2}+a b=1$. Cases $a=0$ and $b=0$ are completely analogous to $c=0$, so we may suppose that $a, b, c \neq 0$. In this case we end up with

$$
\left\{\begin{array}{l}
a^{2}+b^{2}+a b=1, \\
b^{2}+c^{2}+b c=1, \\
c^{2}+a^{2}+c a=1, \\
a b+b c+c a=1
\end{array}\right.
$$

Adding first three equations and subtracting the fourth yields $2\left(a^{2}+b^{2}+c^{2}\right)=2=$ $2(a b+b c+c a)$. Consequently, $(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0$. Now we can easily conclude that $a=b=c= \pm \frac{1}{\sqrt{3}}$.
Solution by Achilleas Sinefakopoulos, Greece. We have

$$
c\left(1-b^{2}\right)=a(1-a b)=a(b c+c a)=c\left(a b+a^{2}\right)
$$

and so

$$
c\left(a^{2}+a b+b^{2}-1\right)=0
$$

Similarly, we have

$$
b\left(a^{2}+a c+c^{2}-1\right)=0 \quad \text { and } \quad a\left(b^{2}+b c+c^{2}-1\right)=0
$$

If $c=0$, then we get $a b=1$ and $a^{2} b=a=b$, which give us $a=b=1$, or $a=b=-1$. Similarly, if $a=0$, then $b=c=1$, or $b=c=-1$, while if $b=0$, then $a=c=1$, or $a=c=-1$.

So assume that $a b c \neq 0$. Then

$$
a^{2}+a b+b^{2}=b^{2}+b c+c^{2}=c^{2}+c a+a^{2}=1 .
$$

Adding these gives us

$$
2\left(a^{2}+b^{2}+c^{2}\right)+a b+b c+c a=3
$$

and using the fact that $a b+b c+c a=1$, we get

$$
a^{2}+b^{2}+c^{2}=1=a b+b c+c a .
$$

Hence

$$
(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=2\left(a^{2}+b^{2}+c^{2}\right)-2(a b+b c+c a)=0
$$

and so $a=b=c= \pm \frac{1}{\sqrt{3}}$.
Therefore, the solutions (a, b, c) are $(0,1,1),(0,-1,-1),(1,0,1),(-1,0,-1),(1,1,0)$, $(-1,-1,0),\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$

Solution by Eirini Miliori (HEL2). It is $a b+b c+c a=1$ and

$$
\begin{equation*}
a^{2} b+c=b^{2} c+a=c^{2} a+b \tag{1}
\end{equation*}
$$

We have

$$
\begin{align*}
a^{2} b+c=b^{2} c+a & \Longleftrightarrow a^{2} b-a=b^{2} c-c \\
& \Longleftrightarrow a(a b-1)=c\left(b^{2}-1\right) \\
& \Longleftrightarrow a(-b c-a c)=c\left(b^{2}-1\right) \\
& \Longleftrightarrow-a c(a+b)=c\left(b^{2}-1\right) \tag{2}
\end{align*}
$$

First, consider the case where one of a, b, c is equal to 0 . Without loss of generality, assume that $a=0$. Then $b c=1$ and $b=c$ from (1), and so $b^{2}=1$ giving us $b=1$ or -1 . Hence $b=c=1$ or $b=c=-1$.

Therefore, (a, b, c) equals one of the triples $(0,1,1),(0,-1,-1)$, as well as their rearrangements $(1,0,1)$ and $(-1,0,-1)$ when $b=0$, or $(1,1,0)$ and $(-1,-1,0)$ when $c=0$.

Now consider the case where $a \neq 0, b \neq 0$ and $c \neq 0$. Then (2) gives us

$$
-a(a+b)=b^{2}-1 \Longleftrightarrow-a^{2}-a b=b^{2}-1 \Longleftrightarrow a^{2}+a b+b^{2}-1=0 .
$$

The quadratic $P(x)=x^{2}+b x+b^{2}-1$ has $x=a$ as a root. Let x_{1} be its second root (which could be equal to a in the case where the discriminant is 0). From Vieta's formulas we get

$$
\left\{\begin{aligned}
x_{1}+a=-b & \Longleftrightarrow x_{1}=-b-a, \text { and } \\
x_{1} a=b^{2}-1 & \Longleftrightarrow x_{1}=\frac{b^{2}-1}{a} .
\end{aligned}\right.
$$

Using $a^{2} b+c=c^{2} a+b$ we obtain $b\left(a^{2}-1\right)=c(a c-1)$ yielding $a^{2}+a c+c^{2}-1=0$ in a similar way. The quadratic $Q(x)=x^{2}+c x+c^{2}-1$ has $x=a$ as a root. Let x_{2} be its second root (which could be equal to a in the case where the discriminant is 0). From Vieta's formulas we get

$$
\left\{\begin{aligned}
x_{2}+a=-c & \Longleftrightarrow x_{2}=-c-a, \text { and } \\
x_{2} a=c^{2}-1 & \Longleftrightarrow x_{2}=\frac{c^{2}-1}{a} .
\end{aligned}\right.
$$

Then

$$
\left\{\begin{array}{l}
x_{1}+x_{2}=-b-a-c-a, \text { and } \\
x_{1}+x_{2}=\frac{b^{2}-1}{a}+\frac{c^{2}-1}{a}
\end{array}\right.
$$

which give us

$$
\begin{align*}
-(2 a+b+c)=\frac{b^{2}-1}{a}+\frac{c^{2}-1}{a} & \Longleftrightarrow-2 a^{2}-b a-c a=b^{2}+c^{2}-2 \\
& \Longleftrightarrow b c-1-2 a^{2}=b^{2}+c^{2}-2 \\
& \Longleftrightarrow 2 a^{2}+b^{2}+c^{2}=1+b c . \tag{3}
\end{align*}
$$

By symmetry, we get

$$
\begin{align*}
& 2 b^{2}+a^{2}+c^{2}=1+a c, \text { and } \tag{4}\\
& 2 c^{2}+a^{2}+b^{2}=1+b c \tag{5}
\end{align*}
$$

Adding equations (3), (4), and (5), we get

$$
4\left(a^{2}+b^{2}+c^{2}\right)=3+a b+b c+c a \Longleftrightarrow 4\left(a^{2}+b^{2}+c^{2}\right)=4 \Longleftrightarrow a^{2}+b^{2}+c^{2}=1
$$

From this and (3), since $a b+b c+c a=1$, we get

$$
a^{2}=b c=1-a b-a c \Longleftrightarrow a(a+b+c)=1 .
$$

Similarly, from (4) we get

$$
b(a+b+c)=1,
$$

and from (4),

$$
c(a+b+c)=1 .
$$

Clearly, it is $a+b+c \neq 0$ (for otherwise it would be $0=1$, a contradiction). Therefore,

$$
a=b=c=\frac{1}{a+b+c},
$$

and so $3 a^{2}=1$ giving us $a=b=c= \pm \frac{1}{\sqrt{3}}$.
In conclusion, the solutions (a, b, c) are $(0,1,1),(0,-1,-1),(1,0,1),(-1,0,-1),(1,1,0)$, $(-1,-1,0),\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, and $\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$.
Solution by ISR5. First, homogenize the condition $a^{2} b+c=b^{2} c+a=c^{2} a+b$ by replacing c by $c(a b+b c+c a)$ (etc.), yielding $a^{2} b+c=a^{2} b+a b c+b c^{2}+c^{2} a=a b c+\sum_{c y c} a^{2} b+\left(c^{2} b-b^{2} c\right)=a b c+\sum_{c y c} a^{2} b+b c(c-b)$.

Thus, after substracting the cyclicly symmetric part $a b c+\sum_{c y c} a^{2} b$ we find the condition is eqivalent to

$$
D:=b c(c-b)=c a(a-c)=a b(b-a) .
$$

Ending 1. It is easy to see that if e.g. $a=0$ then $b=c= \pm 1$, and if e.g. $a=b$ then either $a=b=c= \pm \frac{1}{\sqrt{3}}$ or $a=b= \pm 1, c=0$, and these are indeed solutions. So, to show that these are all solutions (up to symmetries), we may assume by contradiction that a, b, c are pairwise different and non-zero. All conditions are preserved under cyclic shifts and under simultaenously switching signs on all a, b, c, and by applying these operations as necessary we may assume $a<b<c$. It follows that $D^{3}=a^{2} b^{2} c^{2}(c-b)(a-c)(b-a)$ must be negative (the only negative term is $a-c$, hence D is negative, i.e. $b c, a b<0<a c$. But this means that a, c have the same sign and b has a different one, which clearly contradicts $a<b<c$! So, such configurations are impossible.

Ending 2. Note that $3 D=\sum c^{2} b-\sum b^{2} c=(c-b)(c-a)(b-a)$ and $D^{3}=a^{2} b^{2} c^{2}(c-$ $b)(a-c)(b-a)=-3 a^{2} b^{2} c^{2} D$. Since $3 D$ and D^{3} must have the same sign, and $-3 a^{2} b^{2} c^{2}$ is non-positive, necessarily $D=0$. Thus (up to cyclic permutation) $a=b$ and from there we immediately find either $a=b= \pm 1, c=0$ or $a=b=c= \pm \frac{1}{\sqrt{3}}$.

Problem 2 (Luxembourg). Let n be a positive integer. Dominoes are placed on a $2 n \times 2 n$ board in such a way that every cell of the board is adjacent to exactly one cell covered by a domino. For each n, determine the largest number of dominoes that can be placed in this way.
(A domino is a tile of size 2×1 or 1×2. Dominoes are placed on the board in such a way that each domino covers exactly two cells of the board, and dominoes do not overlap. Two cells are said to be adjacent if they are different and share a common side.)

Solution 1. Let M denote the maximal number of dominoes that can be placed on the chessboard. We claim that $M=n(n+1) / 2$. The proof naturally splits into two parts: we first prove that $n(n+1) / 2$ dominoes can be placed on the board, and then show that $M \leq n(n+1) / 2$ to complete the proof.

We construct placings of the dominoes by induction. The base cases $n=1$ and $n=2$ correspond to the placings

Next, we add dominoes to the border of a $2 n \times 2 n$ chessboard to obtain a placing of dominoes for the $2(n+2) \times 2(n+2)$ board,

depending on whether n is odd or even. In these constructions, the interior square is filled with the placing for the $2 n \times 2 n$ board. This construction adds $2 n+3$ dominoes, and therefore places, in total,

$$
\frac{n(n+1)}{2}+(2 n+3)=\frac{(n+2)(n+3)}{2}
$$

dominoes on the board. Noticing that the contour and the interior mesh together appropriately, this proves, by induction, that $n(n+1) / 2$ dominoes can be placed on the $2 n n$ board.

To prove that $M \leq n(n+1) / 2$, we border the $2 n \times 2 n$ square board up to a $(2 n+2) \times(2 n+2)$ square board; this adds $8 n+4$ cells to the $4 n^{2}$ cells that we have started with. Calling a cell covered if it belongs to a domino or is adjacent to a domino, each domino on the $2 n \times 2 n$ board is seen to cover exactly 8 cells of the $(2 n+2) \times(2 n+2)$ board (some of which may belong to the border). By construction, each of the $4 n^{2}$ cells of the $2 n \times 2 n$ board is covered by precisely one domino.

If two adjacent cells on the border, away from a corner, are covered, then there will be at least two uncovered cells on both sides of them; if one covered cell lies between uncovered cells, then again, on both sides of it there will be at least two uncovered cells; three or more adjacent cells cannot be all covered. The following diagrams, in which the borders are shaded, \times marks an uncovered cell on the border, + marks a covered cell not belonging to a domino, and - marks a cell which cannot belong to a domino, summarize the two possible situations,

\cdots	\times	\times	+	+	\times	\times	\cdots
	-	+			+	-	
		-	+	+	-		
			-	-			
\vdots							\vdots

Close to a corner of the board, either the corner belongs to some domino,

\times	+	+	\times	\times	\cdots
+			+	-	
\times	+	+	-		
\times	-	-			
\vdots					

or one of the following situations, in which the corner cell of the original board is not covered by a domino, may occur:

\times	\times	\times	\times	+	+	\cdots
\times	+	+	+			
+			+	+	+	
\times	+	+				
\times	-	-				
\vdots						

It is thus seen that at most half of the cells on the border, i.e. $4 n+2$ cells, may be covered, and hence

$$
M \leq\left[\frac{4 n^{2}+(4 n+2)}{8}\right]=\left[\frac{n(n+1)}{2}+\frac{1}{2}\right]=\frac{n(n+1)}{2}
$$

which completes the proof of our claim.
Solution 2. We use the same example as in Solution 1. Let M denote the maximum number of dominoes which satisfy the condition of the problem. To prove that $M \leq$ $n(n+1) / 2$, we again border the $2 n \times 2 n$ square board up to a $(2 n+2) \times(2 n+2)$ square board. In fact, we shall ignore the corner border cells as they cannot be covered anyway and consider only the $2 n$ border cells along each side. We prove that out of each four border cells next to each other at most two can be covered. Suppose three out of four cells A, B, C, D are covered. Then there are two possibilities below:

The first option is that A, B and D are covered (marked with + in top row). Then the cells inside the starting square next to A, B and D are covered by the dominoes, but the cell in between them has now two adjacent cells with dominoes, contradiction. The second option is that A, B and C are covered. Then the cells inside the given square next to A, B and C are covered by the dominoes. But then the cell next to B has two adjacent cells with dominoes, contradiction.

Now we can split the border cells along one side in groups of 4 (leaving one group of 2 if n is odd). So when n is even, at most n of the $2 n$ border cells along one side can be covered, and when n is odd, at most $n+1$ out of the $2 n$ border cells can be covered. For all four borders together, this gives a contribution of $4 n$ when n is even and $4 n+4$ when n is odd. Adding $4 n^{2}$ and dividing by 8 we get the desired result.

Solution (upper bound) by ISR5. Consider the number of pairs of adjacent cells, such that one of them is covered by a domino. Since each cell is adjacent to one covered cell, the number of such pairs is exactly $4 n^{2}$. On the other hand, let n_{2} be the number of covered corner cells, n_{3} the number of covered edge cells (cells with 3 neighbours), and n_{4} be the number of covered interior cells (cells with 4 neighbours). Thus the number of pairs is $2 n_{2}+3 n_{3}+4 n_{4}=4 n^{2}$, whereas the number of dominoes is $m=\frac{n_{2}+n_{3}+n_{4}}{2}$.
Considering only the outer frame (of corner and edge cells), observe that every covered cell dominates two others, so at most half of the cells are ccovered. The frame has a total of $4(2 n-1)$ cells, i.e. $n_{2}+n_{3} \leq 4 n-2$. Additionally $n_{2} \leq 4$ since there are only 4 corners, thus
$8 m=4 n_{2}+4 n_{3}+4 n_{4}=\left(2 n_{2}+3 n_{3}+4 n_{4}\right)+\left(n_{2}+n_{3}\right)+n_{2} \leq 4 n^{2}+(4 n-2)+4=4 n(n+1)+2$
Thus $m \leq \frac{n(n+1)}{2}+\frac{1}{4}$, so in fact $m \leq \frac{n(n+1)}{2}$.
Solution (upper and lower bound) by ISR5. We prove that this is the upper bound (and also the lower bound!) by proving that any two configurations, say A and B, must contain exactly the same number of dominoes.

Colour the board in a black and white checkboard colouring. Let W be the set of white cells covered by dominoes of tiling A. For each cell $w \in W$ let N_{w} be the set of its adjacent (necessarily black) cells. Since each black cell has exactly one neighbour (necessarily white) covered by a domino of tiling A, it follows that each black cell is contained in exactly one N_{w}, i.e. the N_{w} form a partition of the black cells. Since each white cell has exactly one (necessarily black) neighbour covered by a tile of B, each B_{w} contains exactly one black tile covered by a domino of B. But, since each domino covers exactly one white and one black cell, we have

$$
|A|=|W|=\left|\left\{N_{w}: w \in W\right\}\right|=|B|
$$

as claimed.

Problem 3 (Poland). Let $A B C$ be a triangle such that $\angle C A B>\angle A B C$, and let I be its incentre. Let D be the point on segment $B C$ such that $\angle C A D=\angle A B C$. Let ω be the circle tangent to $A C$ at A and passing through I. Let X be the second point of intersection of ω and the circumcircle of $A B C$. Prove that the angle bisectors of $\angle D A B$ and $\angle C X B$ intersect at a point on line $B C$.

Solution 1. Let S be the intersection point of $B C$ and the angle bisector of $\angle B A D$, and let T be the intersection point of $B C$ and the angle bisector of $\angle B X C$. We will prove that both quadruples A, I, B, S and A, I, B, T are concyclic, which yields $S=T$.

Firstly denote by M the middle of arc $A B$ of the circumcenter of $A B C$ which does not contain C. Consider the circle centered at M passing through A, I and B (it is well-known that $M A=M I=M B$); let it intersect $B C$ at B and S^{\prime}. Since $\angle B A C>\angle C B A$ it is easy to check that S^{\prime} lies on side $B C$. Denoting the angles in $A B C$ by α, β, γ we get

$$
\angle B A D=\angle B A C-\angle D A C=\alpha-\beta .
$$

Moreover since $\angle M B C=\angle M B A+\angle A B C=\frac{\gamma}{2}+\beta$, then

$$
\angle B M S^{\prime}=180^{\circ}-2 \angle M B C=180^{\circ}-\gamma-2 \beta=\alpha-\beta
$$

It follows that $\angle B A S^{\prime}=2 \angle B M S^{\prime}=2 \angle B A D$ which gives us $S=S^{\prime}$.

Secondly let N be the middle of arc $B C$ of the circumcenter of $A B C$ which does not contain A. From $\angle B A C>\angle C B A$ we conclude that X lies on the arc $A B$ of circumcircle of $A B C$ not containing C. Obviously both $A I$ and $X T$ are passing through N. Since $\angle N B T=\frac{\alpha}{2}=\angle B X N$ we obtain $\triangle N B T \sim \triangle N X B$, therefore

$$
N T \cdot N X=N B^{2}=N I^{2}
$$

It follows that $\triangle N T I \sim \triangle N I X$. Keeping in mind that $\angle N B C=\angle N A C=\angle I X A$ we get

$$
\angle T I N=\angle I X N=\angle N X A-\angle I X A=\angle N B A-\angle N B C=\angle T B A .
$$

It means that A, I, B, T are concyclic which ends the proof.
Solution 2. Let $\angle B A C=\alpha, \angle A B C=\beta, \angle B C A=\gamma \angle A C X=\phi$. Denote by W_{1} and W_{2} the intersections of segment $B C$ with the angle bisectors of $\angle B X C$ and $\angle B A D$ respectively. Then $B W_{1} / W_{1} C=B X / X C$ and $B W_{2} / W_{2} D=B A / A D$. We shall show that $B W_{1}=B W_{2}$.

Since $\angle D A C=\angle C B A$, triangles $A D C$ and $B A C$ are similar and therefore

$$
\frac{D C}{A C}=\frac{A C}{B C}
$$

By the Law of sines

$$
\frac{B W_{2}}{W_{2} D}=\frac{B A}{A D}=\frac{B C}{A C}=\frac{\sin \alpha}{\sin \beta} .
$$

Consequently

$$
\begin{gathered}
\frac{B D}{B W_{2}}=\frac{W_{2} D}{B W_{2}}+1=\frac{\sin \beta}{\sin \alpha}+1 \\
\frac{B C}{B W_{2}}=\frac{B C}{B D} \cdot \frac{B D}{B W_{2}}=\frac{1}{1-D C / B C} \cdot \frac{B D}{B W_{2}}=\frac{1}{1-A C^{2} / B C^{2}} \cdot \frac{B D}{B W_{2}}= \\
\frac{\sin ^{2} \alpha}{\sin ^{2} \alpha-\sin ^{2} \beta} \cdot \frac{\sin \beta+\sin \alpha}{\sin \alpha}=\frac{\sin \alpha}{\sin \alpha-\sin \beta} .
\end{gathered}
$$

Note that $A X B C$ is cyclic and so $\angle B X C=\angle B A C=\alpha$. Hence, $\angle X B C=180^{\circ}-$ $\angle B X C-\angle B C X=180^{\circ}-\alpha-\phi$. By the Law of sines for the triangle $B X C$, we have

$$
\begin{gathered}
\frac{B C}{W_{1} B}=\frac{W_{1} C}{W_{1} B}+1=\frac{C X}{B X}+1=\frac{\sin \angle C B X}{\sin \phi}+1= \\
\frac{\sin (\alpha+\phi)}{\sin \phi}+1=\sin \alpha \cot \phi+\cos \alpha+1
\end{gathered}
$$

So, it's enough to prove that

$$
\frac{\sin \alpha}{\sin \alpha-\sin \beta}=\sin \alpha \cot \phi+\cos \alpha
$$

Since $A C$ is tangent to the circle $A I X$, we have $\angle A X I=\angle I A C=\alpha / 2$. Moreover $\angle X A I=\angle X A B+\angle B A I=\phi+\alpha / 2$ and $\angle X I A=180^{\circ}-\angle X A I-\angle A X I=180^{\circ}-\alpha-\phi$. Applying the Law of sines again $X A C, X A I, I A C$ we obtain

$$
\begin{gathered}
\frac{A X}{\sin (\alpha+\phi)}=\frac{A I}{\sin \alpha / 2}, \\
\frac{A X}{\sin (\gamma-\phi)}=\frac{A C}{\sin \angle A X C}=\frac{A C}{\sin \beta}, \\
\frac{A I}{\sin \gamma / 2}=\frac{A C}{\sin (\alpha / 2+\gamma / 2)} .
\end{gathered}
$$

Combining the last three equalities we end up with

$$
\begin{aligned}
& \frac{\sin (\gamma-\phi)}{\sin (\alpha+\phi)}=\frac{A I}{A C} \cdot \frac{\sin \beta}{\sin \alpha / 2}=\frac{\sin \beta}{\sin \alpha / 2} \cdot \frac{\sin \gamma / 2}{\sin (\alpha / 2+\gamma / 2)} \\
& \frac{\sin (\gamma-\phi)}{\sin (\alpha+\phi)}=\frac{\sin \gamma \cot \phi-\cos \gamma}{\sin \alpha \cot \phi+\cos \alpha}=\frac{2 \sin \beta / 2 \sin \gamma / 2}{\sin \alpha / 2}
\end{aligned}
$$

$$
\frac{\sin \alpha \sin \gamma \cot \phi-\sin \alpha \cos \gamma}{\sin \gamma \sin \alpha \cot \phi+\sin \gamma \cos \alpha}=\frac{2 \sin \beta / 2 \cos \alpha / 2}{\cos \gamma / 2}
$$

Subtracting 1 from both sides yields

$$
\begin{gathered}
\frac{-\sin \alpha \cos \gamma-\sin \gamma \cos \alpha}{\sin \gamma \sin \alpha \cot \phi+\sin \gamma \cos \alpha}=\frac{2 \sin \beta / 2 \cos \alpha / 2}{\cos \gamma / 2}-1= \\
\frac{2 \sin \beta / 2 \cos \alpha / 2-\sin (\alpha / 2+\beta / 2)}{\cos \gamma / 2}=\frac{\sin \beta / 2 \cos \alpha / 2-\sin \alpha / 2 \cos \beta / 2}{\cos \gamma / 2}, \\
\frac{-\sin (\alpha+\gamma)}{\sin \gamma \sin \alpha \cot \phi+\sin \gamma \cos \alpha}=\frac{\sin (\beta / 2-\alpha / 2)}{\cos \gamma / 2}, \\
\frac{-\sin \beta}{\sin \alpha \cot \phi+\cos \alpha}=2 \sin \gamma / 2 \sin (\beta / 2-\alpha / 2)= \\
2 \cos (\beta / 2+\alpha / 2) \sin (\beta / 2-\alpha / 2)=\sin \beta-\sin \alpha,
\end{gathered}
$$

and the result follows. We are left to note that none of the denominators can vanish.
Solution by Achilleas Sinefakopoulos, Greece. We first note that

$$
\angle B A D=\angle B A C-\angle D A C=\angle A-\angle B .
$$

Let $C X$ and $A D$ meet at K. Then $\angle C X A=\angle A B C=\angle K A C$. Also, we have $\angle I X A=$ $\angle A / 2$, since ω is tangent to $A C$ at A. Therefore,

$$
\angle D A I=|\angle B-\angle A / 2|=|\angle K X A-\angle I X A|=\angle K X I,
$$

(the absolute value depends on whether $\angle B \geq \angle A / 2$ or not) which means that XKIA is cyclic, i.e. K lies also on ω.

Let $I K$ meet $B C$ at E. (If $\angle B=\angle A / 2$, then $I K$ degenerates to the tangent line to ω at I.) Note that BEIA is cyclic, because

$$
\angle E I A=180^{\circ}-\angle K X A=180^{\circ}-\angle A B E .
$$

We have $\angle E K A=180^{\circ}-\angle A X I=180^{\circ}-\angle A / 2$ and $\angle A E I=\angle A B I=\angle B / 2$. Hence

$$
\begin{aligned}
\angle E A K & =180^{\circ}-\angle E K A-\angle A E I \\
& =180^{\circ}-\left(180^{\circ}-\angle A / 2\right)-\angle B / 2 \\
& =(\angle A-\angle B) / 2 \\
& =\angle B A D / 2 .
\end{aligned}
$$

This means that $A E$ is the angle bisector of $\angle B A D$. Next, let M be the point of intersection of $A E$ and $B I$. Then

$$
\angle E M I=180^{\circ}-\angle B / 2-\angle B A D / 2=180^{\circ}-\angle A / 2,
$$

and so, its supplement is

$$
\angle A M I=\angle A / 2=\angle A X I,
$$

so X, M, K, I, A all lie on ω. Next, we have

$$
\begin{aligned}
\angle X M A & =\angle X K A \\
& =180^{\circ}-\angle A D C-\angle X C B \\
& =180^{\circ}-\angle A-\angle X C B \\
& =\angle B+\angle X C A \\
& =\angle B+\angle X B A \\
& =\angle X B E,
\end{aligned}
$$

and so X, B, E, M are concyclic. Hence

$$
\begin{aligned}
\angle E X C & =\angle E X M+\angle M X C \\
& =\angle M B E+\angle M A K \\
& =\angle B / 2+\angle B A D / 2 \\
& =\angle A / 2 \\
& =\angle B X C / 2 .
\end{aligned}
$$

This means that $X E$ is the angle bisector of $\angle B X C$ and so we are done!

Solution based on that by Eirini Miliori (HEL2), edited by A. Sinefakopoulos, Greece. It is $\angle A B D=\angle D A C$, and so $\overline{A C}$ is tangent to the circumcircle of $\triangle B A D$ at A. Hence $C A^{2}=C D \cdot C B$.

Triangle $\triangle A B C$ is similar to triangle $\triangle C A D$, because $\angle C$ is a common angle and $\angle C A D=\angle A B C$, and so $\angle A D C=\angle B A C=2 \varphi$.
Let Q be the point of intersection of $\overline{A D}$ and $\overline{C X}$. Since $\angle B X C=\angle B A C=2 \varphi$, it follows that $B D Q X$ is cyclic.Therefore, $C D \cdot C B=C Q \cdot C X=C A^{2}$ which implies that Q lies on ω.

Next let P be the point of intersection of $\overline{A D}$ with the circumcircle of triangle $\triangle A B C$. Then $\angle P B C=\angle P A C=\angle A B C=\angle A P C$ yielding $C A=C P$. So, let T be on the side $\overline{B C}$ such that $C T=C A=C P$. Then

$$
\angle T A D=\angle T A C-\angle D A C=\left(90^{\circ}-\frac{\angle C}{2}\right)-\angle B=\frac{\angle A-\angle B}{2}=\frac{\angle B A D}{2}
$$

that is, line $\overline{A T}$ is the angle bisector of $\angle B A D$. We want to show that $\overline{X T}$ is the angle bisector of $\angle B X C$. To this end, it suffices to show that $\angle T X C=\varphi$.
It is $C T^{2}=C A^{2}=C Q \cdot C X$, and so $\overline{C T}$ is tangent to the circumcircle of $\triangle X T Q$ at T. Since $\angle T X Q=\angle Q T C$ and $\angle Q D C=2 \varphi$, it suffices to show that $\angle T Q D=\varphi$, or, in other words, that I, Q, and T are collinear.

Let T^{\prime} is the point of intersection of $\overline{I Q}$ and $\overline{B C}$. Then $\triangle A I C$ is congruent to $\triangle T^{\prime} I C$, since they share $\overline{C I}$ as a common side, $\angle A C I=\angle T^{\prime} C I$, and

$$
\angle I T^{\prime} D=2 \varphi-\angle T^{\prime} Q D=2 \varphi-\angle I Q A=2 \varphi-\angle I X A=\varphi=\angle I A C .
$$

Therefore, $C T^{\prime}=C A=C T$, which means that T coincides with T^{\prime} and completes the proof.

Solution based on the work of Artemis-Chrysanthi Savva (HEL4), completed by A. Sinefakopoulos, Greece. Let G be the point of intersection of $\overline{A D}$ and $\overline{C X}$. Since the quadrilateral $A X B C$ is cyclic, it is $\angle A X C=\angle A B C$.

Let the line $\overline{A D}$ meet ω at K. Then it is $\angle A X K=\angle C A D=\angle A B C$, because the angle that is formed by a chord and a tangent to the circle at an endpoint of the chord equals the inscribed angle to that chord. Therefore, $\angle A X K=\angle A X C=\angle A X G$. This means that the point G coincides with the point K and so G belongs to the circle ω.

Let E be the point of intersection of the angle bisector of $\angle D A B$ with $\overline{B C}$. It suffices to show that

$$
\frac{C E}{B E}=\frac{X C}{X B} .
$$

Let F be the second point of intersection of ω with $\overline{A B}$. Then we have $\angle I A F=\frac{\angle C A B}{2}=$ $\angle I X F$, where I is the incenter of $\triangle A B C$, because $\angle I A F$ and $\angle I X F$ are inscribed in the same arc of ω. Thus $\triangle A I F$ is isosceles with $A I=I F$. Since I is the incenter of $\triangle A B C$, we have $A F=2(s-a)$, where $s=(a+b+c) / 2$ is the semiperimeter of $\triangle A B C$. Also, it is $C E=A C=b$ because in triangle $\triangle A C E$, we have

$$
\begin{aligned}
\angle A E C & =\angle A B C+\angle B A E \\
& =\angle A B C+\frac{\angle B A D}{2} \\
& =\angle A B C+\frac{\angle B A C-\angle A B C}{2} \\
& =90^{\circ}-\frac{\angle A C E}{2},
\end{aligned}
$$

and so $\angle C A E=180^{\circ}-\angle A E C-\angle A C E=90^{\circ}-\frac{\angle A C E}{2}=\angle A E C$. Hence

$$
B F=B A-A F=c-2(s-a)=a-b=C B-C E=B E .
$$

Moreover, triangle $\triangle C A X$ is similar to triangle $\triangle B F X$, because $\angle A C X=\angle F B X$ and

$$
\angle X F B=\angle X A F+\angle A X F=\angle X A F+\angle C A F=\angle C A X
$$

Therefore

$$
\frac{C E}{B E}=\frac{A C}{B F}=\frac{X C}{X B}
$$

as desired. The proof is complete.
Solution by IRL1 and IRL 5. Let ω denote the circle through A and I tangent to $A C$. Let Y be the second point of intersection of the circle ω with the line $A D$. Let L
be the intersection of $B C$ with the angle bisector of $\angle B A D$. We will prove $\angle L X C=$ $1 / 2 \angle B A C=1 / 2 \angle B X C$.

We will refer to the angles of $\triangle A B C$ as $\angle A, \angle B, \angle C$. Thus $\angle B A D=\angle A-\angle B$.
On the circumcircle of $\triangle A B C$, we have $\angle A X C=\angle A B C=\angle C A D$, and since $A C$ is tangent to ω, we have $\angle C A D=\angle C A Y=\angle A X Y$. Hence C, X, Y are collinear.
Also note that $\triangle C A L$ is isosceles with $\angle C A L=\angle C L A=\frac{1}{2}(\angle B A D)+\angle A B C=\frac{1}{2}(\angle A+$ $\angle B)$ hence $A C=C L$. Moreover, $C I$ is angle bisector to $\angle A C L$ so it's the symmetry axis for the triangle, hence $\angle I L C=\angle I A C=1 / 2 \angle A$ and $\angle A L I=\angle L I A=1 / 2 \angle B$. Since $A C$ is tangent to ω, we have $\angle A Y I=\angle I A C=1 / 2 \angle A=\angle L A Y+\angle A L I$. Hence L, Y, I are collinear.

Since $A C$ is tangent to ω, we have $\triangle C A Y \sim \triangle C X A$ hence $C A^{2}=C X \cdot C Y$. However we proved $C A=C L$ hence $C L^{2}=C X \cdot C Y$. Hence $\triangle C L Y \sim \triangle C X L$ and hence $\angle C X L=\angle C L Y=\angle C A I=1 / 2 \angle A$.

Solution by IRL 5. Let M be the midpoint of the arc $B C$. Let ω denote the circle through A and I tangent to $A C$. Let N be the second point of intersection of ω with $A B$ and L the intersection of $B C$ with the angle bisector of $\angle B A D$. We know $\frac{D L}{L B}=\frac{A D}{A B}$ and want to prove $\frac{X B}{X C}=\frac{L B}{L C}$.
First note that $\triangle C A L$ is isosceles with $\angle C A L=\angle C L A=\frac{1}{2}(\angle B A D)+\angle A B C$ hence $A C=C L$ and $\frac{L B}{L C}=\frac{L B}{A C}$.
Now we calculate $\frac{X B}{X C}$:
Comparing angles on the circles ω and the circumcircle of $\triangle A B C$ we get $\triangle X I N \sim$ $\triangle X M B$ and hence also $\triangle X I M \sim \triangle X N B$ (having equal angles at X and proportional adjoint sides). Hence $\frac{X B}{X M}=\frac{N B}{I M}$.

Also comparing angles on the circles ω and the circumcircle of $\triangle A B C$ and using the tangent $A C$ we get $\triangle X A I \sim \triangle X C M$ and hence also $\triangle X A C \sim \triangle X I M$. Hence $\frac{X C}{X M}=$ $\frac{A C}{I M}$.
Comparing the last two equations we get $\frac{X B}{X C}=\frac{N B}{A C}$. Comparing with $\frac{L B}{L C}=\frac{L B}{A C}$, it remains to prove $N B=L B$.

We prove $\triangle I N B \equiv \triangle I L B$ as follows:
First, we note that I is the circumcentre of $\triangle A L N$. Indeed, $C I$ is angle bisector in the isosceles triangle $A C L$ so it's perpendicular bisector for $A L$. As well, $\triangle I A N$ is isosceles with $\angle I N A=\angle C A I=\angle I A B$ hence I is also on the perpendicular bisector of $A N$.

Hence $I N=I L$ and also $\angle N I L=2 \angle N A L=\angle A-\angle B=2 \angle N I B$ (the last angle is calculated using that the exterior angle of $\triangle N I B$ is $\angle I N A=\angle A / 2$. Hence $\angle N I B=$ $\angle L I B$ and $\triangle I N B \equiv \triangle I L B$ by SAS.

Solution by ISR5 (with help from IRL5). Let M, N be the midpoints of arcs $B C, B A$ of the circumcircle $A B C$, respectively. Let Y be the second intersection of $A D$ and circle $A B C$. Let E be the incenter of triangle $A B Y$ and note that E lies on the angle bisectors of the triangle, which are the lines $Y N$ (immediate), $B C$ (since $\angle C B Y=\angle C A Y=\angle C A D=\angle A B C)$ and the angle bisector of $\angle D A B$; so the question reduces to showing that E is also on $X M$, which is the angle bisector of $\angle C X B$.

We claim that the three lines $C X, A D Y, I E$ are concurrent at a point D^{\prime}. We will complete the proof using this fact, and the proof will appear at the end (and see the solution by HEL5 for an alternative proof of this fact).

To show that XEM are collinear, we construct a projective transformation which projects M to X through center E. We produce it as a composition of three other projections. Let O be the intersection of lines $A D^{\prime} D Y$ and $C I N$. Projecting the points $Y N C M$ on the circle $A B C$ through the (concyclic) point A to the line $C N$ yields the points $O N C I$. Projecting these points through E to the line $A Y$ yields $O Y D D^{\prime}$ (here we use the facts that D^{\prime} lies on $I E$ and $A Y$). Projecting these points to the circle $A B C$ through C yields $N Y B X$ (here we use the fact that D^{\prime} lies on $C X$). Composing, we observe that we found a projection of the circle $A B C$ to itself sending $Y N C M$ to $N Y B X$. Since the projection of the circle through E also sends $Y N C$ to $N Y B$, and three points determine a projective transformation, the projection through E also sends M to X, as claimed.

Let B^{\prime}, D^{\prime} be the intersections of $A B, A D$ with the circle $A X I$, respectively. We wish to show that this D^{\prime} is the concurrency point defined above, i.e. that $C D^{\prime} X$ and $I D^{\prime} E$ are collinear. Additionally, we will show that I is the circumcenter of $A B^{\prime} E$.

Consider the inversion with center C and radius $C A$. The circles $A X I$ and $A B D$ are tangent to $C A$ at A (the former by definition, the latter since $\angle C A D=\angle A B C$), so they are preserved under the inversion. In particular, the inversion transposes D and B and preserves A, so sends the circle $C A B$ to the line $A D$. Thus X, which is the second intersection of circles $A B C$ and $A X I$, is sent by the inversion to the second intersection of $A D$ and circle $A X I$, which is D^{\prime}. In particular $C D^{\prime} X$ are collinear.

In the circle $A I B^{\prime}, A I$ is the angle bisector of $B^{\prime} A$ and the tangent at A, so I is the midpoint of the arc $A B^{\prime}$, and in particular $A I=I B^{\prime}$. By angle chasing, we find that $A C E$ is an isosceles triangle:
$\angle C A E=\angle C A D+\angle D A E=\angle A B C+\angle E A B=\angle A B E+\angle E A B=\angle A E B=\angle A E C$,
thus the angle bisector $C I$ is the perpendicular bisector of $A E$ and $A I=I E$. Thus I is the circumcenter of $A B^{\prime} E$.

We can now show that $I D^{\prime} E$ are collinear by angle chasing:

$$
\angle E I B^{\prime}=2 \angle E A B^{\prime}=2 \angle E A B=\angle D A B=\angle D^{\prime} A B^{\prime}=\angle D^{\prime} I B^{\prime} .
$$

Solution inspired by ISR2. Let W be the midpoint of arc $B C$, let D^{\prime} be the second intersection point of $A D$ and the circle $A B C$. Let P be the intersection of the angle bisector $X W$ of $\angle C X B$ with $B C$; we wish to prove that $A P$ is the angle bisector of $D A B$. Denote $\alpha=\frac{\angle C A B}{2}, \beta=\angle A B C$.

Let M be the intersection of $A D$ and $X C$. Angle chasing finds:

$$
\begin{aligned}
\angle M X I & =\angle A X I-\angle A X M=\angle C A I-\angle A X C=\angle C A I-\angle A B C=\alpha-\beta \\
& =\angle C A I-\angle C A D=\angle D A I=\angle M A I
\end{aligned}
$$

And in particular M is on ω. By angle chasing we find

$$
\angle X I A=\angle I X A+\angle X A I=\angle I C A+\angle X A I=\angle X A C=\angle X B C=\angle X B P
$$

and $\angle P X B=\alpha=\angle C A I=\angle A X I$, and it follows that $\triangle X I A \sim \triangle X B P$. Let S be the second intersection point of the cirumcircles of $X I A$ and $X B P$. Then by the spiral map lemma (or by the equivalent angle chasing) it follows that $I S B$ and $A S P$ are collinear.

Let L be the second intersection of ω and $A B$. We want to prove that $A S P$ is the angle bisector of $\angle D A B=\angle M A L$, i.e. that S is the midpoint of the $\operatorname{arc} M L$ of ω. And this follows easily from chasing angular arc lengths in ω :

$$
\begin{aligned}
& \overparen{A I}=\angle C A I=\alpha \\
& \overparen{I L}=\angle I A L=\alpha \\
& \overparen{M I}=\angle M X I=\alpha-\beta \\
& \widehat{A I}-\overparen{S L}=\angle A B I=\frac{\beta}{2}
\end{aligned}
$$

And thus

$$
\widehat{M L}=\widehat{M I}+\widehat{I L}=2 \alpha-\beta=2\left(\widehat{A I}-\frac{\beta}{2}\right)=2 \widehat{S L}
$$

Solution by inversion, by JPN Observer A, Satoshi Hayakawa. Let E be the intersection of the bisector of $\angle B A D$ and $B C$, and N be the middle point of arc $B C$ of the circumcircle of $A B C$. Then it suffices to show that E is on line $X N$.

We consider the inversion at A. Let P^{*} be the image of a point denoted by P. Then A, B^{*}, C^{*}, E^{*} are concyclic, X^{*}, B^{*}, C^{*} are colinear, and $X^{*} I^{*}$ and $A C^{*}$ are parallel. Now it suffices to show that A, X^{*}, E^{*}, N^{*} are concyclic. Let Y be the intersection of $B^{*} C^{*}$ and $A E^{*}$. Then, by the power of a point, we get

$$
\begin{aligned}
A, X^{*}, E^{*}, N^{*} \text { are concyclic } & \Longleftrightarrow Y X^{*} \cdot Y N^{*}=Y A \cdot Y E^{*} \\
& \Longleftrightarrow Y X^{*} \cdot Y N^{*}=Y B^{*} \cdot Y C^{*} \\
& \left(A, B^{*}, C^{*}, E^{*} \text { are concyclic }\right)
\end{aligned}
$$

Here, by the property of inversion, we have

$$
\angle A I^{*} B^{*}=\angle A B I=\frac{1}{2} \angle A B C=\frac{1}{2} \angle C^{*} A D^{*} .
$$

Define Q, R as described in the figure, and we get by simple angle chasing

$$
\angle Q A I^{*}=\angle Q I^{*} A, \quad \angle R A I^{*}=\angle B^{*} I^{*} A .
$$

Especially, $B^{*} R$ and $A I^{*}$ are parallel, so that we have

$$
\frac{Y B^{*}}{Y N^{*}}=\frac{Y R}{Y A}=\frac{Y X^{*}}{Y C^{*}},
$$

and the proof is completed.

Problem 4 (Poland). Let $A B C$ be a triangle with incentre I. The circle through B tangent to $A I$ at I meets side $A B$ again at P. The circle through C tangent to $A I$ at I meets side $A C$ again at Q. Prove that $P Q$ is tangent to the incircle of $A B C$.
Solution 1. Let $Q X, P Y$ be tangent to the incircle of $A B C$, where X, Y lie on the incircle and do not lie on $A C, A B$. Denote $\angle B A C=\alpha, \angle C B A=\beta, \angle A C B=\gamma$.

Since $A I$ is tangent to the circumcircle of $C Q I$ we get $\angle Q I A=\angle Q C I=\frac{\gamma}{2}$. Thus

$$
\angle I Q C=\angle I A Q+\angle Q I A=\frac{\alpha}{2}+\frac{\gamma}{2} .
$$

By the definition of X we have $\angle I Q C=\angle X Q I$, therefore

$$
\angle A Q X=180^{\circ}-\angle X Q C=180^{\circ}-\alpha-\gamma=\beta
$$

Similarly one can prove that $\angle A P Y=\gamma$. This means that Q, P, X, Y are collinear which leads us to the conclusion that $X=Y$ and $Q P$ is tangent to the incircle at X.

Solution 2. By the power of a point we have

$$
A D \cdot A C=A I^{2}=A P \cdot A B, \quad \text { which means that } \quad \frac{A Q}{A P}=\frac{A B}{A C}
$$

and therefore triangles $A D P, A B C$ are similar. Let J be the incenter of $A Q P$. We obtain

$$
\angle J P Q=\angle I C B=\angle Q C I=\angle Q I J
$$

thus J, P, I, Q are concyclic. Let S be the intersection of $A I$ and $B C$. It follows that

$$
\angle I Q P=\angle I J P=\angle S I C=\angle I Q C .
$$

This means that $I Q$ is the angle bisector of $\angle C Q P$, so $Q P$ is indeed tangent to the incircle of $A B C$.

Comment. The final angle chasing from the Solution 2 may simply be replaced by the observation that since J, P, I, Q are concyclic, then I is the A-excenter of triangle $A P Q$.

Solution 3. Like before, notice that $A Q \cdot A C=A P \cdot A B=A I^{2}$. Consider the positive inversion Ψ with center A and power $A I^{2}$. This maps P to B (and vice-versa), Q to C
(and vice-versa), and keeps the incenter I fixed. The problem statement will follow from the fact that the image of the incircle of triangle $A B C$ under Ψ is the so-called mixtilinear incircle of $A B C$, which is defined to be the circle tangent to the lines $A B, A C$, and the circumcircle of $A B C$. Indeed, since the image of the line $Q P$ is the circumcircle of $A B C$, and inversion preserves tangencies, this implies that $Q P$ is tangent to the incircle of $A B C$.

We justify the claim as follows: let γ be the incircle of $A B C$ and let Γ_{A} be the A-mixtilinear incircle of $A B C$. Let K and L be the tangency points of γ with the sides $A B$ and $A C$, and let U and V be the tangency points of Γ_{A} with the sides $A B$ and $A C$, respectively. It is well-known that the incenter I is the midpoint of segment $U V$. In particular, since also $A I \perp U V$, this implies that $A U=A V=\frac{A I}{\cos \frac{A}{2}}$. Note that $A K=A L=A I \cdot \cos \frac{A}{2}$. Therefore, $A U \cdot A K=A V \cdot A L=A I^{2}$, which means that U and V are the images of K and L under Ψ. Since Γ_{A} is the unique circle simultaneously tangent to $A B$ at U and to $A C$ at V, it follows that the image of γ under Ψ must be precisely Γ_{A}, as claimed.

Solution by Achilleas Sinefakopoulos, Greece. From the power of a point theorem, we have

$$
A P \cdot A B=A I^{2}=A Q \cdot A C
$$

Hence $P B C Q$ is cyclic, and so, $\angle A P Q=\angle B C A$. Let K be the circumcenter of $\triangle B I P$ and let L be the circumcenter of $\triangle Q I C$. Then $\overline{K L}$ is perpendicular to $\overline{A I}$ at I.

Let N be the point of intersection of line $\overline{K L}$ with $\overline{A B}$. Then in the right triangle $\triangle N I A$, we have $\angle A N I=90^{\circ}-\frac{\angle B A C}{2}$ and from the external angle theorem for triangle $\triangle B N I$, we have $\angle A N I=\frac{\angle A B C}{2}+\angle N I B$. Hence

$$
\angle N I B=\angle A N I-\frac{\angle A B C}{2}=\left(90^{\circ}-\frac{\angle B A C}{2}\right)-\frac{\angle A B C}{2}=\frac{\angle B C A}{2} .
$$

Since $M I$ is tangent to the circumcircle of $\triangle B I P$ at I, we have

$$
\angle B P I=\angle B I M=\angle N I M-\angle N I B=90^{\circ}-\frac{\angle B C A}{2} .
$$

Also, since $\angle A P Q=\angle B C A$, we have

$$
\angle Q P I=180^{\circ}-\angle A P Q-\angle B P I=180^{\circ}-\angle B C A-\left(90^{\circ}-\frac{\angle B C A}{2}\right)=90^{\circ}-\frac{\angle B C A}{2}
$$

as well. Hence I lies on the angle bisector of $\angle B P Q$, and so it is equidistant from its sides $\overline{P Q}$ and $\overline{P B}$. Therefore, the distance of I from $\overline{P Q}$ equals the inradius of $\triangle A B C$, as desired.

Solution by Eirini Miliori (HEL2). Let D be the point of intersection of $\overline{A I}$ and $\overline{B C}$ and let R be the point of intersection of $\overline{A I}$ and $\overline{P Q}$. We have $\angle R I P=\angle P B I=\frac{\angle B}{2}$, $\angle R I Q=\angle I C Q=\frac{\angle C}{2}, \angle I Q C=\angle D I C=x$ and $\angle B P I=\angle B I D=\varphi$, since $\overline{A I}$ is tangent to both circles.

From the angle bisector theorem, we have

$$
\frac{R Q}{R P}=\frac{A Q}{A P} \quad \text { and } \quad \frac{A C}{A B}=\frac{D C}{B D}
$$

Since $\overline{A I}$ is tangent to both circles at I, we have $A I^{2}=A Q \cdot A C$ and $A I^{2}=A P \cdot A B$. Therefore,

$$
\begin{equation*}
\frac{R Q}{R P} \cdot \frac{D C}{B D}=\frac{A Q \cdot A C}{A B \cdot A P}=1 . \tag{1}
\end{equation*}
$$

From the sine law in triangles $\triangle Q R I$ and $\triangle P R I$, it follows that $\frac{R Q}{\sin \frac{\angle C}{2}}=\frac{R I}{\sin y}$ and $\frac{R P}{\sin \frac{\angle B}{2}}=\frac{R I}{\sin \omega}$, respectively. Hence

$$
\begin{equation*}
\frac{R Q}{R P} \cdot \frac{\sin \frac{\angle B}{2}}{\sin \frac{\angle C}{2}}=\frac{\sin \omega}{\sin y} \tag{2}
\end{equation*}
$$

Similarly, from the sine law in triangles $\triangle I D C$ and $\triangle I D B$, it is $\frac{D C}{\sin x}=\frac{I D}{\sin \frac{\angle C}{2}}$ and $\frac{B D}{\sin \varphi}=\frac{I D}{\sin \frac{\angle B}{2}}$, and so

$$
\begin{equation*}
\frac{D C}{B D} \cdot \frac{\sin \varphi}{\sin x}=\frac{\sin \frac{\angle B}{2}}{\sin \frac{\angle C}{2}} . \tag{3}
\end{equation*}
$$

By multiplying equations (2) with (3), we obtain $\frac{R Q}{R P} \cdot \frac{D C}{B D} \cdot \frac{\sin \varphi}{\sin x}=\frac{\sin \omega}{\sin y}$, which combined with (1) and cross-multiplying yields

$$
\begin{equation*}
\sin \varphi \cdot \sin y=\sin \omega \cdot \sin x \tag{4}
\end{equation*}
$$

Let $\theta=90^{\circ}+\frac{\angle A}{2}$. Since I is the incenter of $\triangle A B C$, we have $x=90^{\circ}+\frac{\angle A}{2}-\varphi=\theta-\phi$. Also, in triangle $\triangle P I Q$, we see that $\omega+y+\frac{\angle B}{2}+\frac{\angle C}{2}=180^{\circ}$, and so $y=\theta-\omega$.

Therefore, equation (4) yields

$$
\sin \varphi \cdot \sin (\theta-\omega)=\sin \omega \cdot \sin (\theta-\varphi)
$$

or

$$
\frac{1}{2}(\cos (\varphi-\theta+\omega)-\cos (\varphi+\theta-\omega))=\frac{1}{2}(\cos (\omega-\theta+\varphi)-\cos (\omega+\theta-\varphi))
$$

which is equivalent to

$$
\cos (\varphi+\theta-\omega)=\cos (\omega+\theta-\varphi)
$$

So

$$
\varphi+\theta-\omega=2 k \cdot 180^{\circ} \pm(\omega+\theta-\varphi), \quad(k \in \mathbb{Z} .)
$$

If $\varphi+\theta-\omega=2 k \cdot 180^{\circ}+(\omega+\theta-\varphi)$, then $2(\varphi-\omega)=2 k \cdot 180^{\circ}$, with $|\varphi-\omega|<180^{\circ}$ forcing $k=0$ and $\varphi=\omega$. If $\varphi+\theta-\omega=2 k \cdot 180^{\circ}-(\omega+\theta-\varphi)$, then $2 \theta=2 k \cdot 180^{\circ}$, which contradicts the fact that $0^{\circ}<\theta<180^{\circ}$. Hence $\varphi=\omega$, and so $P I$ is the angle bisector of $\angle Q P B$.

Therefore the distance of I from $\overline{P Q}$ is the same with the distance of I from $A B$, which is equal to the inradius of $\triangle A B C$. Consequently, $\overline{P Q}$ is tangent to the incircle of $\triangle A B C$.

Problem 5 (Netherlands).

Let $n \geq 2$ be an integer, and let $a_{1}, a_{2}, \ldots, a_{n}$ be positive integers. Show that there exist positive integers $b_{1}, b_{2}, \ldots, b_{n}$ satisfying the following three conditions:

1. $a_{i} \leq b_{i}$ for $i=1,2, \ldots, n$;
2. the remainders of $b_{1}, b_{2}, \ldots, b_{n}$ on division by n are pairwise different; and
3. $b_{1}+\cdots+b_{n} \leq n\left(\frac{n-1}{2}+\left\lfloor\frac{a_{1}+\cdots+a_{n}}{n}\right\rfloor\right)$.
(Here, $\lfloor x\rfloor$ denotes the integer part of real number x, that is, the largest integer that does not exceed x.)

Solution 1. We define the b_{i} recursively by letting b_{i} be the smallest integer such that $b_{i} \geq a_{i}$ and such that b_{i} is not congruent to any of b_{1}, \ldots, b_{i-1} modulo n. Then $b_{i}-a_{i} \leq i-1$, since of the i consecutive integers $a_{i}, a_{i}+1, \ldots, a_{i}+i-1$, at most $i-1$ are congruent to one of b_{1}, \ldots, b_{i-1} modulo n. Since all b_{i} are distinct modulo n, we have $\sum_{i=1}^{n} b_{i} \equiv \sum_{i=1}^{n}(i-1)=\frac{1}{2} n(n-1)$ modulo n, so n divides $\sum_{i=1}^{n} b_{i}-\frac{1}{2} n(n-1)$. Moreover, we have $\sum_{i=1}^{n} b_{i}-\sum_{i=1}^{n} a_{i} \leq \sum_{i=1}^{n}(i-1)=\frac{1}{2} n(n-1)$, hence $\sum_{i=1}^{n} b_{i}-\frac{1}{2} n(n-1) \leq \sum_{i=1}^{n}$. As the left hand side is divisible by n, we have

$$
\frac{1}{n}\left(\sum_{i=1}^{n} b_{i}-\frac{1}{2} n(n-1)\right) \leq\left[\frac{1}{n} \sum_{i=1}^{n} a_{i}\right]
$$

which we can rewrite as

$$
\sum_{i=1}^{n} b_{i} \leq n\left(\frac{n-1}{2}+\left[\frac{1}{n} \sum_{i=1}^{n} a_{i}\right]\right)
$$

as required.
Solution 2. Note that the problem is invariant under each of the following operations:

- adding a multiple of n to some a_{i} (and the corresponding b_{i});
- adding the same integer to all a_{i} (and all b_{i});
- permuting the index set $1,2, \ldots, n$.

We may therefore remove the restriction that our a_{i} and b_{i} be positive.
For each congruence class \bar{k} modulo $n(\bar{k}=\overline{0}, \ldots, \overline{n-1})$, let $h(k)$ be the number of i such that a_{i} belongs to \bar{k}. We will now show that the problem is solved if we can find a $t \in \mathbb{Z}$ such that

$$
\begin{array}{ccc}
h(t) & \geq 1, \\
h(t)+h(t+1) & \geq 2, \\
+h(t+1)+h(t+2) & \geq 3, \\
& \vdots &
\end{array}
$$

Indeed, these inequalities guarantee the existence of elements $a_{i_{1}} \in \bar{t}, a_{i_{2}} \in \bar{t} \cup \overline{t+1}$, $a_{i_{3}} \in \bar{t} \cup \overline{t+1} \cup \overline{t+2}$, et cetera, where all i_{k} are different. Subtracting appropriate
multiples of n and reordering our elements, we may assume $a_{1}=t, a_{2} \in\{t, t+1\}$, $a_{3} \in\{t, t+1, t+2\}$, et cetera. Finally subtracting t from the complete sequence, we may assume $a_{1}=0, a_{2} \in\{0,1\}, a_{3} \in\{0,1,2\}$ et cetera. Now simply setting $b_{i}=i-1$ for all i suffices, since $a_{i} \leq b_{i}$ for all i, the b_{i} are all different modulo n, and

$$
\sum_{i=1}^{n} b_{i}=\frac{n(n-1)}{2} \leq \frac{n(n-1)}{2}+n\left[\frac{\sum_{i=1}^{n} a_{i}}{n}\right] .
$$

Put $x_{i}=h(i)-1$ for all $i=0, \ldots, n-1$. Note that $x_{i} \geq-1$, because $h(i) \geq 0$. If we have $x_{i} \geq 0$ for all $i=0, \ldots, n-1$, then taking $t=0$ completes the proof. Otherwise, we can pick some index j such that $x_{j}=-1$. Let $y_{i}=x_{i}$ where $i=0, \ldots, j-1, j+1, \ldots, n-1$ and $y_{j}=0$. For sequence $\left\{y_{i}\right\}$ we have

$$
\sum_{i=0}^{n-1} y_{i}=\sum_{i=0}^{n-1} x_{i}+1=\sum_{i=0}^{n-1} h(i)-n+1=1,
$$

so from Raney's lemma there exists index k such that $\sum_{i=k}^{k+j} y_{i}>0$ for all $j=0, \ldots, n-1$ where $y_{n+j}=y_{j}$ for $j=0, \ldots, k-1$. Taking $t=k$ we will have

$$
\sum_{t=k}^{k+i} h(t)-(i+1)=\sum_{t=k}^{k+i} x(t) \geq \sum_{t=k}^{k+i} y(t)-1 \geq 0
$$

for all $i=0, \ldots, n-1$ and we are done.
Solution 3. Choose a random permutation c_{1}, \ldots, c_{n} of the integers $1,2, \ldots, n$. Let $b_{i}=a_{i}+f\left(c_{i}-a_{i}\right)$, where $f(x) \in\{0, \ldots, n-1\}$ denotes a remainder of x modulo n. Observe, that for such defined sequence the first two conditions hold. The expected value of $B:=b_{1}+\ldots+b_{n}$ is easily seen to be equal to $a_{1}+\ldots+a_{n}+n(n-1) / 2$. Indeed, for each i the random number $c_{i}-a_{i}$ has uniform distribution modulo n, thus the expected value of $f\left(c_{i}-a_{i}\right)$ is $(0+\ldots+(n-1)) / n=(n-1) / 2$. Therefore we may find such c that $B \leq a_{1}+\ldots+a_{n}+n(n-1) / 2$. But $B-n(n-1) / 2$ is divisible by n and therefore $B \leq n\left[\left(a_{1}+\ldots+a_{n}\right) / n\right]+n(n-1) / 2$ as needed.

Solution 4. We will prove the required statement for all sequences of non-negative integers a_{i} by induction on n.

Case $n=1$ is obvious, just set $b_{1}=a_{1}$.
Now suppose that the statement is true for some $n \geq 1$; we shall prove it for $n+1$.
First note that, by subtracting a multiple of $n+1$ to each a_{i} and possibly rearranging indices we can reduce the problem to the case where $0 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq a_{n+1}<$ $n+1$.

Now, by the induction hypothesis there exists a sequence $d_{1}, d_{2}, \ldots, d_{n}$ which satisfies the properties required by the statement in relation to the numbers a_{1}, \ldots, a_{n}. Set $I=\{i \mid 1 \leq$ $i \leq n$ and $\left.d_{i} \bmod n \geq a_{i}\right\}$ and construct b_{i}, for $i=1, \ldots, n+1$, as follows:

$$
b_{i}=\left\{\begin{array}{l}
d_{i} \bmod n, \text { when } i \in I \\
n+1+\left(d_{i} \bmod n\right), \text { when } i \in\{1, \ldots, n\} \backslash I \\
n, \text { for } i=n+1
\end{array}\right.
$$

Now, $a_{i} \leq d_{i} \bmod n \leq b_{i}$ for $i \in I$, while for $i \notin I$ we have $a_{i} \leq n \leq b_{i}$. Thus the sequence $\left(b_{i}\right)_{i=1}^{n+1}$ satisfies the first condition from the problem statement.

By the induction hypothesis, the numbers $d_{i} \bmod n$ are distinct for $i \in\{1, \ldots, n\}$, so the values $b_{i} \bmod (n+1)$ are distinct elements of $\{0, \ldots, n-1\}$ for $i \in\{1, \ldots, n\}$. Since $b_{n+1}=n$, the second condition is also satisfied.

Denote $k=|I|$. We have

$$
\begin{gathered}
\sum_{i=1}^{n+1} b_{i}=\sum_{i=1}^{n} b_{i}+n=\sum_{i=1}^{n} d_{i} \bmod n+(n-k)(n+1)+n= \\
\frac{n(n+1)}{2}+(n-k)(n+1)
\end{gathered}
$$

hence we need to show that

$$
\frac{n(n+1)}{2}+(n-k)(n+1) \leq \frac{n(n+1)}{2}+(n+1)\left[\frac{\sum_{i=1}^{n+1} a_{i}}{n+1}\right]
$$

equivalently, that

$$
n-k \leq\left[\frac{\sum_{i=1}^{n+1} a_{i}}{n+1}\right]
$$

Next, from the induction hypothesis we have

$$
\begin{gathered}
\frac{n(n-1)}{2}+n\left[\frac{\sum_{i=1}^{n} a_{i}}{n}\right] \geq \sum_{i=1}^{n} d_{i}=\sum_{i \in I} d_{i}+\sum_{i \notin I} d_{i} \geq \\
\sum_{i \in I} d_{i} \bmod n+\sum_{i \notin I}\left(n+d_{i} \bmod n\right)=\frac{n(n-1)}{2}+(n-k) n
\end{gathered}
$$

or

$$
n-k \leq\left[\frac{\sum_{i=1}^{n} a_{i}}{n}\right]
$$

Thus, it's enough to show that

$$
\frac{\sum_{i=1}^{n} a_{i}}{n} \leq \frac{\sum_{i=1}^{n+1} a_{i}}{n+1}
$$

because then

$$
n-k \leq\left[\frac{\sum_{i=1}^{n} a_{i}}{n}\right] \leq\left[\frac{\sum_{i=1}^{n+1} a_{i}}{n+1}\right]
$$

But the required inequality is equivalent to $\sum_{i=1}^{n} a_{i} \leq n a_{n+1}$, which is obvious.
Solution 5. We can assume that all $a_{i} \in\{0,1, \ldots, n-1\}$, as we can deduct n from both a_{i} and b_{i} for arbitrary i without violating any of the three conditions from the problem statement. We shall also assume that $a_{1} \leq \ldots \leq a_{n}$.

Now let us provide an algorithm for constructing b_{1}, \ldots, b_{n}.

We start at step 1 by choosing $f(1)$ to be the maximum i in $\{1, \ldots, n\}$ such that $a_{i} \leq n-1$, that is $f(1)=n$. We set $b_{f(1)}=n-1$.
Having performed steps 1 through j, at step $j+1$ we set $f(j+1)$ to be the maximum i in $\{1, \ldots, n\} \backslash\{f(1), \ldots, f(j)\}$ such that $a_{i} \leq n-j-1$, if such an index exists. If it does, we set $b_{f(j+1)}=n-j-1$. If there is no such index, then we define $T=j$ and assign to the terms b_{i}, where $i \notin f(\{1, \ldots, j\})$, the values $n, n+1 \ldots, 2 n-j-1$, in any order, thus concluding the run of our algorithm.

Notice that the sequence $\left(b_{i}\right)_{i=1}^{n}$ satisfies the first and second required conditions by construction. We wish to show that it also satisfies the third.

Notice that, since the values chosen for the b_{i} 's are those from $n-T$ to $2 n-T-1$, we have

$$
\sum_{i=1}^{n} b_{i}=\frac{n(n-1)}{2}+(n-T) n
$$

It therefore suffices to show that

$$
\left[\frac{a_{1}+\ldots+a_{n}}{n}\right] \geq n-T,
$$

or (since the RHS is obviously an integer) $a_{1}+\ldots+a_{n} \geq(n-T) n$.
First, we show that there exists $1 \leq i \leq T$ such that $n-i=b_{f(i)}=a_{f(i)}$.
Indeed, this is true if $a_{n}=n-1$, so we may suppose $a_{n}<n-1$ and therefore $a_{n-1} \leq n-2$, so that $T \geq 2$. If $a_{n-1}=n-2$, we are done. If not, then $a_{n-1}<n-2$ and therefore $a_{n-2} \leq n-3$ and $T \geq 3$. Inductively, we actually obtain $T=n$ and necessarily $f(n)=1$ and $a_{1}=b_{1}=0$, which gives the desired result.

Now let t be the largest such index i. We know that $n-t=b_{f(t)}=a_{f(t)}$ and therefore $a_{1} \leq \ldots \leq a_{f(t)} \leq n-t$. If we have $a_{1}=\ldots=a_{f(t)}=n-t$, then $T=t$ and we have $a_{i} \geq n-T$ for all i, hence $\sum_{i} a_{i} \geq n(n-T)$. Otherwise, $T>t$ and in fact one can show $T=t+f(t+1)$ by proceeding inductively and using the fact that t is the last time for which $a_{f(t)}=b_{f(t)}$.

Now we get that, since $a_{f(t+1)+1} \geq n-t$, then $\sum_{i} a_{i} \geq(n-t)(n-f(t+1))=(n-T+f(t+$ 1) $)(n-f(t+1))=n(n-T)+n f(t+1)-f(t+1)(n-T+f(t+1))=n(n-T)+t f(t+1) \geq$ $n(n-T)$.

Greedy algorithm variant 1 (ISR). Consider the residues $0, \ldots, n-1$ modulo n arranged in a circle clockwise, and place each a_{i} on its corresponding residue; so that on each residue there is a stack of all a_{i} s congruent to it modulo n, and the sum of the sizes of all stacks is exactly n. We iteratively flatten and spread the stacks forward, in such a way that the a_{i} s are placed in the nearest available space on the circle clockwise (skipping over any already flattened residue or still standing stack). We may choose the order in which the stacks are flattened. Since the total amount of numbers equals the total number of spaces, there is always an available space and at the end all spaces are covered. The $b_{i} \mathrm{~s}$ are then defined by adding to each a_{i} the number of places it was moved forward, which clearly satifies (i) and (ii), and we must prove that they satisfy (iii) as well.

Suppose that we flatten a stack of k numbers at a residue i, causing it to overtake a stack of l numbers at residue $j \in(i, i+k)$ (we can allow j to be larger than n and identify it
with its residue modulo n). Then in fact in fact in whichever order we would flatten the two stacks, the total number of forward steps would be the same, and the total sum of the corresponding b_{t} (such that $a_{t} \bmod n \in\{i, j\}$) would be the same. Moreover, we can merge the stacks to a single stack of $k+l$ numbers at residue i, by replacing each $a_{t} \equiv j$ $(\bmod n)$ by $a_{t}^{\prime}=a_{t}-(j-i)$, and this stack would be flattened forward into the same positions as the separate stacks would have been, so applying our algorithm to the new stacks will yield the same total sum of $\sum b_{i}$ - but the a_{i} s are strictly decreased, so $\sum a_{i}$ is decreased, so $\left\lfloor\frac{\sum a_{i}}{n}\right\rfloor$ is not increased - so by merging the stacks, we can only make the inequality we wish to prove tighter.

Thus, as long as there is some stack that when flattened will overtake another stack, we may merge stacks and only make the inequality tighter. Since the amount of numbers equals the amount of places, the merging process terminates with stacks of sizes k_{1}, \ldots, k_{m}, such that the stack j, when flattened, will exactly cover the interval to the next stack. Clearly the numbers in each such stack were advanced by a total of $\sum_{t=1}^{k_{j}-1}=\frac{k_{j}\left(k_{j}-1\right)}{2}$, thus $\sum b_{i}=\sum a_{i}+\sum_{j} \frac{k_{j}\left(k_{j}-1\right)}{2}$. Writing $\sum a_{i}=n \cdot r+s$ with $0 \leq s<n$, we must therefore show

$$
s+\sum_{j} \frac{k_{j}\left(k_{j}-1\right)}{2} \leq \frac{n(n-1)}{2}
$$

Ending 1. Observing that both sides of the last inequality are congruent modulo n (both are congruent to the sum of all different residues), and that $0 \leq s<n$, the inequality is eqivalent to the simpler $\sum_{j} \frac{k_{j}\left(k_{j}-1\right)}{2} \leq \frac{n(n-1)}{2}$. Since $x(x-1)$ is convex, and k_{j} are nonnegative integers with $\sum_{j} k_{j}=n$, the left hand side is maximal when $k_{j^{\prime}}=n$ and the rest are 0 , and then eqaulity is achieved. (Alternatively it follows easily for any non-negative reals from AM-GM.)

Ending 2. If $m=1$ (and $k_{1}=n$), then all numbers are in a single stack and have the same residue, so $s=0$ and equality is attained. If $m \geq 2$, then by convexity $\sum_{j} \frac{k_{j}\left(k_{j}-1\right)}{2}$ is maximal for $m=2$ and $\left(k_{1}, k_{2}\right)=(n-1,1)$, where it equals $\frac{(n-1)(n-2)}{2}$. Since we always have $s \leq n-1$, we find

$$
s+\sum_{j} \frac{k_{j}\left(k_{j}-1\right)}{2} \leq(n-1)+\frac{(n-1)(n-2)}{2}=\frac{n(n-1)}{2}
$$

as required.
Greedy algorithm variant 1^{\prime} (ISR). We apply the same algorithm as in the previous solution. However, this time we note that we may merge stacks not only when they overlap after flattening, but also when they merely touch front-to-back: That is, we relax the condition $j \in(i, i+k)$ to $j \in(i, i+k]$; the argument for why such merges are allowed is exactly the same (But note that this is now sharp, as merging non-touching stacks can cause the sum of b_{i} s to decrease).

We now observe that as long as there at least two stacks left, at least one will spread to touch (or overtake) the next stack, so we can perform merges until there is only one stack left. We are left with verifying that the inequality indeed holds for the case of only one stack which is spread forward, and this is indeed immediate (and in fact equality is achieved).

Greedy algorithm variant 2 (ISR). Let $c_{i}=a_{i} \bmod n$. Iteratively define $b_{i}=a_{i}+l_{i}$ greedily, write $d_{i}=c_{i}+l_{i}$, and observe that $l_{i} \leq n-1$ (since all residues are present in $a_{i}, \ldots, a_{i}+n-1$), hence $0 \leq d_{i} \leq 2 n-2$. Let $I=\left\{i \in I: d_{i} \geq n\right\}$, and note that $d_{i}=b_{i}$ $\bmod n$ if $i \notin I$ and $d_{i}=\left(b_{i} \bmod n\right)+n$ if $i \in I$. Then we must show

$$
\begin{aligned}
& \sum\left(a_{i}+l_{i}\right)=\sum b_{i} \leq \frac{n(n-1)}{2}+n\left\lfloor\frac{\sum a_{i}}{n}\right\rfloor \\
\Longleftrightarrow & \sum\left(c_{i}+l_{i}\right) \leq \sum\left(b_{i} \bmod n\right)+n\left\lfloor\frac{\sum c_{i}}{n}\right\rfloor \\
\Longleftrightarrow & \left.n|I| \leq n\left\lfloor\frac{\sum c_{i}}{n}\right\rfloor \Longleftrightarrow|I| \leq \left\lvert\, \frac{\sum c_{i}}{n}\right.\right\rfloor \Longleftrightarrow|I| \leq \frac{\sum c_{i}}{n}
\end{aligned}
$$

Let $k=|I|$, and for each $0 \leq m<n$ let $J_{m}=\left\{i: c_{i} \geq n-m\right\}$. We claim that there must be some m for which $\left|J_{m}\right| \geq m+k$ (clearly for such m, at least k of the sums d_{j} with $j \in J_{m}$ must exceed n, i.e. at least k of the elements of J_{m} must also be in I, so this m is a "witness" to the fact $|I| \geq k)$. Once we find such an m, then we clearly have

$$
\sum c_{i} \geq(n-m)\left|J_{m}\right| \geq(n-m)(k+m)=n k+m(n-(k+m)) \geq n k=n|I|
$$

as required. We now construct such an m explicitly.
If $k=0$, then clearly $m=n$ works (and also the original inequality is trivial). Otherwise, there are some d_{i} s greater than n, and let $r+n=\max d_{i}$, and suppose $d_{t}=r+n$ and let $s=c_{t}$. Note that $r<s<r+n$ since $l_{t}<n$. Let $m \geq 0$ be the smallest number such that $n-m-1$ is not in $\left\{d_{1}, \ldots, d_{t}\right\}$, or equivalently m is the largest such that $[n-m, n) \subset\left\{d_{1}, \ldots, d_{t}\right\}$. We claim that this m satisfies the required property. More specifically, we claim that $J_{m}^{\prime}=\left\{i \leq t: d_{i} \geq n-m\right\}$ contains exactly $m+k$ elements and is a subset of J_{m}.

Note that by the greediness of the algorithm, it is impossible that for $\left[c_{i}, d_{i}\right)$ to contain numbers congruent to $d_{j} \bmod n$ with $j>i$ (otherwise, the greedy choice would prefer d_{j} to d_{i} at stage i). We call this the greedy property. In particular, it follows that all i such that $d_{i} \in\left[s, d_{t}\right)=\left[c_{t}, d_{t}\right)$ must satisfy $i<t$. Additionally, $\left\{d_{i}\right\}$ is disjoint from $[n+r+1,2 n)$ (by maximality of d_{t}), but does intersect every residue class, so it contains $[r+1, n)$ and in particular also $[s, n)$. By the greedy property the latter can only be attained by d_{i} with $i<t$, thus $[s, n) \subset\left\{d_{1}, \ldots, d_{t}\right\}$, and in particular $n-m \leq s$ (and in particular $m \geq 1$).

On the other hand $n-m>r$ (since $r \notin\left\{d_{i}\right\}$ at all), so $n-m-1 \geq r$. It follows that there is a time $t^{\prime} \geq t$ for which $d_{t^{\prime}} \equiv n-m-1(\bmod n)$: If $n-m-1=r$ then this is true for $t^{\prime}=t$ with $d_{t}=n+r=2 n-m-1$; whereas if $n-m-1 \in[r+1, n)$ then there is some t^{\prime} for which $d_{t^{\prime}}=n-m-1$, and by the definition of m it satisfies $t^{\prime}>t$.

Therefore for all $i<t \leq t^{\prime}$ for which $d_{i} \geq n-m$, necessarily also $c_{i} \geq n-m$, since otherwise $d_{t^{\prime}} \in\left[c_{i}, d_{i}\right)$, in contradiction to the greedy property. This is also true for $i=t$, since $c_{t}=s \geq n-m$ as previously shown. Thus, $J_{m}^{\prime} \subset J_{m}$ as claimed.

Finally, since by definition of m and greediness we have $[n-m, n) \cup\left\{d_{i}: i \in I\right\} \subset$ $\left\{d_{1}, \ldots, d_{t}\right\}$, we find that $\left\{d_{j}: j \in J_{m}^{\prime}\right\}=[n-m, n) \cup\left\{d_{i}: i \in I\right\}$ and thus $\left|J_{m}^{\prime}\right|=$ $|[n-m, n)|+|I|=m+k$ as claimed.

Problem 6 (United Kingdom).

On a circle, Alina draws 2019 chords, the endpoints of which are all different. A point is considered marked if it is either
(i) one of the 4038 endpoints of a chord; or
(ii) an intersection point of at least two chords.

Alina labels each marked point. Of the 4038 points meeting criterion (i), Alina labels 2019 points with a 0 and the other 2019 points with a 1 . She labels each point meeting criterion (ii) with an arbitrary integer (not necessarily positive).

Along each chord, Alina considers the segments connecting two consecutive marked points. (A chord with k marked points has $k-1$ such segments.) She labels each such segment in yellow with the sum of the labels of its two endpoints and in blue with the absolute value of their difference.

Alina finds that the $N+1$ yellow labels take each value $0,1, \ldots, N$ exactly once. Show that at least one blue label is a multiple of 3 .
(A chord is a line segment joining two different points on a circle.)
Solution 1. First we prove the following:
Lemma: if we color all of the points white or black, then the number of white-black edges, which we denote $E_{W B}$, is equal modulo 2 to the number of white (or black) points on the circumference, which we denote C_{W}, resp. C_{B}.

Observe that changing the colour of any interior point does not change the parity of $E_{W B}$, as each interior point has even degree, so it suffices to show the statement holds when all interior points are black. But then $E_{W B}=C_{W}$ so certainly the parities are equal.

Now returning to the original problem, assume that no two adjacent vertex labels differ by a multiple of three, and three-colour the vertices according to the residue class of the labels modulo 3. Let E_{01} denote the number of edges between 0 -vertices and 1 -vertices, and C_{0} denote the number of 0 -vertices on the boundary, and so on.

Then, consider the two-coloring obtained by combining the 1 -vertices and 2 -vertices. By applying the lemma, we see that $E_{01}+E_{02} \equiv C_{0} \bmod 2$.

$$
\text { Similarly } E_{01}+E_{12} \equiv C_{1}, \quad \text { and } E_{02}+E_{12} \equiv C_{2}, \quad \bmod 2 .
$$

Using the fact that $C_{0}=C_{1}=2019$ and $C_{2}=0$, we deduce that either E_{02} and E_{12} are even and E_{01} is odd; or E_{02} and E_{12} are odd and E_{01} is even.

But if the edge labels are the first N non-negative integers, then $E_{01}=E_{12}$ unless $N \equiv 0$ modulo 3, in which case $E_{01}=E_{02}$. So however Alina chooses the vertex labels, it is not possible that the multiset of edge labels is $\{0, \ldots, N\}$.

Hence in fact two vertex labels must differ by a multiple of 3 .
Solution 2. As before, colour vertices based on their label modulo 3 .
Suppose this gives a valid 3-colouring of the graph with 2019 0s and 2019 1s on the
circumference. Identify pairs of 0-labelled vertices and pairs of 1-labelled vertices on the circumference, with one 0 and one 1 left over. The resulting graph has even degrees except these two leaves. So the connected component \mathcal{C} containing these leaves has an Eulerian path, and any other component has an Eulerian cycle.

Let E_{01}^{*} denote the number of edges between 0 -vertices and 1 -vertices in \mathcal{C}, and let E_{01}^{\prime} denote the number of such edges in the other components, and so on. By studying whether a given vertex has label congruent to 0 modulo 3 or not as we go along the Eulerian path in \mathcal{C}, we find $E_{01}^{*}+E_{02}^{*}$ is odd, and similarly $E_{01}^{*}+E_{12}^{*}$ is odd. Since neither start nor end vertex is a 2 -vertex, $E_{02}^{*}+E_{12}^{*}$ must be even.

Applying the same argument for the Eulerian cycle in each other component and adding up, we find that $E_{01}^{\prime}+E_{02}^{\prime}, E_{01}^{\prime}+E_{12}^{\prime}, E_{02}^{\prime}+E_{12}^{\prime}$ are all even. So, again we find $E_{01}+E_{02}$, $E_{01}+E_{12}$ are odd, and $E_{02}+E_{12}$ is even, and we finish as in the original solution.

