Solution 1. The ratio of the numbers on the board is invariant, so cannot change $1 / 2 \rightarrow 2 / 3$. Or the difference is semi-invariant (always increases), so cannot stay at 1 .

Solution 2. For the lack of the primes the subset can not contain any number divisible by the prime greater then 3 . Both 1 and 8 are third powers, they can be add to any convenient subset. The numbers in $P=\{2,3,4,6,9\}$ remains. If the number 6 is in the subset the only numbers 4 and 9 must follow it from the P. The convenient subsets of $P \backslash\{6\}$ are empty set, $\{2,4\},\{3,9\}$ and its union. Thus only five subsets of P satisfy the condition which means that there are $5 \cdot 2($ number 1$) \cdot 2($ number 8$)-1($ empty set $)=19$ convenient subsets in total.

Solution 3. From the given condition it follows that $A B D$ and $C B D$ are two congruent right-angled isosceles triangles $(S A S)$ and thus the quadrilateral $A B C D$ is the parallelogram with $|\angle A B C|=|\angle C D A|=135^{\circ}$.

If we suppose $|A B|=|B D|=|D C|=1$ we obtain $|B C|=|A D|=\sqrt{2}$ and $|B M|=\frac{1}{2} \sqrt{2}$. Just we shall prove that the triangles $A B M$ are $A D C$ are similar because

$$
|A M|:|B M|=1: \frac{\sqrt{2}}{2}=\sqrt{2}: 1=|A D|:|D C| .
$$

It directly follows

$$
|\angle B A M|+|\angle D C A|=45^{\circ} .
$$

Solution 4. If $a b c \geq 0$ we have

$$
a b+b c+c a \leq a b c \leq 2 a b c
$$

an the claim is true.
We will prove that the case $a b c<0$ is impossible. For the sake of contradiction let us suppose that it holds. Then just one from a, b, c is negative, wlog $c<0$ (i.e., a and b are positive and $a+b>0$ holds). Using $c=1-(a+b)$ we rewrite
$a b+b c+c a<a b c$ by the following manner

$$
a b+(1-(a+b))(a+b)=a b+c(a+b)=a b+b c+c a<a b c=a b(1-(a+b)) .
$$

It means

$$
(1-(a+b))(a+b)<-a b(a+b), \quad \text { i.e. } \quad 1-a-b+a b<0
$$

or equivalently

$$
(a-1)(b-1)<0
$$

what is the desired contradiction for the positive integers a and b.
Remark: We can prove that both $a+b+c=1$ and $a b+b c+c a<a b c$ give $a b+b c+c a \leq 0 \leq a b c$.

Solution 5. The desired number n equals 14499
Adding algorithm gives that

$$
S(2 n)=2 * S(n)-9 k,
$$

where k is a number of digits in n which are greater then 4 . Using this we rewrite the equation to the form $4 S(n)=3(2 S(n)-9 k)$, or equivalently $2 S(n)=27 k$. It follows $27 \mid S(n)>0$. Case $S(n) \geq 54$ means that n is written by at least 6 digits.

For $S(n)=27$ the number n has just two digits greater than or equal to 5 , remaining at least $(27-2 \cdot 9): 4 \geq 3$ digits are at most 4 . The least desired n consists of at least 5 digits, two of them are greater than 4 . In the least n such digits are the greatest possible last two and the remaining three are the first. By easy argumentation we obtain $n=14499$.

Solution 1. Let N is the meet point of $B C$ and $G D$. From $|C G|:|C M|=2: 3$ it follows $|B N|=1 / 3|B C|$ and $|G N|=2 / 3|M B|=1 / 3|A B|$. This yields $|C N|=2 / 3|B C|$ and $|D N|=|D G|-1 / 3|A B|=|A B|-1 / 3|A B|=2 / 3|A B|$. Triangles $B N G$ and $C N D$ are homothetic with the centre N and coefficient -2 which follows the parallelism.

Other solution. Let $S_{X Y Z}$ be the area of a triangle $X Y Z$. Then $S_{B C G}=$ $1 / 3 S_{A B C}=S_{A B G}=S_{D B G}$ which follows the parallelism of $B G$ and $C D$.

Solution 2. The triple satisfies

$$
a b-588 c-2024=14 \sqrt{3}(a c-b) .
$$

Rationality of the lhs gives $b=a c$, i.e.

$$
c\left(a^{2}-588\right)=2024
$$

Maximal a means minimal positive integer c. For $c=1$ it is $a^{2}=2612$ where a is not integer, for $c=2$ it is $a^{2}=1600$ with $a=40$. The desired triple is (40, 80, 2).

Solution 3. Let an isosceles triangle $A B C$ with interior angles $\alpha=\beta, \gamma$ (in the natural order) satisfies the problem. According to the problem conditions it is sufficient to consider a cutting line going through the triangle vertex. We will show that only triangles with the interior angles $\left(45^{\circ}, 45^{\circ}, 90^{\circ}\right),\left(36^{\circ}, 36^{\circ}, 108^{\circ}\right)$, $\left(72^{\circ}, 72^{\circ}, 36^{\circ}\right)$ and $\left((540 / 7)^{\circ},(540 / 7)^{\circ},(180 / 7)^{\circ}\right)$ satisfy the problem.
(1) $\gamma=90^{\circ}$ (right-angled isosceles triangle). The cutting line goes through the point C obviously, it is its altitude and it corresponds to the first solution.
(2) $\gamma>90^{\circ}$ (obtuse isosceles triangle). The cutting line through the point C (obviously) meets the point $D \in A B$ and wlog the angle $C D B$ is obtuse. Then $|A D C|=\frac{1}{2}\left(180^{\circ}-\left(90^{\circ}-\frac{1}{2} \gamma\right)\right)=45^{\circ}+\frac{1}{4} \gamma$ and $|B D C|=\gamma$. This
follows

$$
180^{\circ}=|A D C|+|B D C|=\left(45^{\circ}+\frac{1}{4} \gamma\right)+\gamma, \quad \text { a tedy } \quad \gamma=108^{\circ}
$$

which corresponds with the second solution.

(3) $\gamma<90^{\circ}$. The cutting line must go through A or B, wlog A, and meets the point $E \in B C$. We distinguish two cases according to $A E$ is the base or the leg of the triangle $A B E$.
(a) $A E$ is the leg. Then
$180^{\circ}=|A E B|+|A E C|=\left(90^{\circ}-\frac{1}{2} \gamma\right)+\left(180^{\circ}-2 \gamma\right)$, tedy $\gamma=36^{\circ}$,
the third solution,
(b) $A E$ is the base. Then

$$
180^{\circ}=|A E B|+|A E C|=\left(45^{\circ}+\frac{1}{4} \gamma\right)+\left(180^{\circ}-2 \gamma\right), \text { tj. } \gamma=180^{\circ} / 7
$$

the fourth solution finally.

Solution 4. Let $\lfloor\sqrt{n}\rfloor=k$. The n could be written in the form $k^{2}+z=$ $(k-1)^{2}+2(k-1)+1+z$, where $0 \leq z \leq 2 k$. The assumption $k-1 \mid k^{2}+z$ means $k-1 \mid z+1$.

- For $k=1$ there is no solution.
- For $k=2$ all permissible $z \in\langle 0,4\rangle$ satisfy, i.e 5 solutions.
- For $k=3$ only even $z \in\langle 0,6\rangle$ satisfies, i.e 3 solutions.
- For $k=4$ only $z \in\{2,5,8\} \subset\langle 0,8\rangle$ satisfies, i.e three solutions.
- For $k>4$ the inequality $3(k-1)>2 k+1 \geq z+1$ holds, so we have only 2 possibilities to satisfy $k-1 \mid z+1$:
(1) $z+1=k-1$, i.e. $z=k-2$. Since $k>4, z \in\langle 0,2 k\rangle$ holds. Then $n=k^{2}+k-2$. The maximal k satisfying $n<2024$ is 44 , in this case we have $k=5,6, \ldots, 44$, i.e. 40 possibilities.
(2) $z+1=2 k-2$, i.e. $z=2 k-3$. analogically $z \in\langle 0,2 k\rangle$. Then $n=k^{2}+2 k-3$. As in the previous case we obtain $k=5,6, \ldots, 44$, i.e 40 possibilities once more.

Altogether we have $5+3+3+40+40=91$ suitable numbers n.
Solution 5. No. Both numbers have the same number of digits, this implies their ratio lies between $1 / 10$ and 10 , precisely $1 / 8$ and 8 . These two powers of 2 would need to be congruent modulo 9 . Meanwhile their difference can only be $2^{a+1}-2^{a}=2^{a}, 2^{a+2}-2^{a}=3 \cdot 2^{a}$ or $2^{a+3}-2^{a}=7 \cdot 2^{a}$. None of them is divisible by 9 .

Solution 6. If there is 1 anywhere, then the complete row and complete column are filled with 1's, so 1's are everywhere. Now say there are no 1's on the board. Let n be the greatest number present on the board. Then together in the row and column containing n we need to have n distinct values. But only $n-1$ different values (i.e. 2 to n) are available (as we assumed there are no 1's) - contradiction.

