
Solution 1. The ratio of the numbers on the board is invariant, so cannot change
1/2 → 2/3. Or the difference is semi-invariant (always increases), so cannot stay
at 1.

Solution 2. For the lack of the primes the subset can not contain any number
divisible by the prime greater then 3. Both 1 and 8 are third powers, they can
be add to any convenient subset. The numbers in P = {2, 3, 4, 6, 9} remains.
If the number 6 is in the subset the only numbers 4 and 9 must follow it from
the P . The convenient subsets of P \ {6} are empty set, {2, 4}, {3, 9} and its
union. Thus only five subsets of P satisfy the condition which means that there
are 5 · 2(number 1) · 2(number 8) − 1(empty set) = 19 convenient subsets in total.

Solution 3. From the given condition it follows that ABD and CBD are two
congruent right-angled isosceles triangles (SAS) and thus the quadrilateral ABCD
is the parallelogram with |∠ABC| = |∠CDA| = 135◦.
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If we suppose |AB| = |BD| = |DC| = 1 we obtain |BC| = |AD| =
√

2 and
|BM | = 1

2

√
2. Just we shall prove that the triangles ABM are ADC are similar

because

|AM | : |BM | = 1 :
√

2
2 =

√
2 : 1 = |AD| : |DC|.

It directly follows
|∠BAM | + |∠DCA| = 45◦.

Solution 4. If abc ≥ 0 we have

ab + bc + ca ≤ abc ≤ 2abc

an the claim is true.
We will prove that the case abc < 0 is impossible. For the sake of contradiction

let us suppose that it holds. Then just one from a, b, c is negative, wlog c < 0
(i.e., a and b are positive and a + b > 0 holds). Using c = 1 − (a + b) we rewrite



ab + bc + ca < abc by the following manner
ab + (1 − (a + b))(a + b) = ab + c(a + b) = ab + bc + ca < abc = ab(1 − (a + b)).

It means
(1 − (a + b))(a + b) < −ab(a + b), i.e. 1 − a − b + ab < 0,

or equivalently
(a − 1)(b − 1) < 0

what is the desired contradiction for the positive integers a and b.

Remark: We can prove that both a + b + c = 1 and ab + bc + ca < abc give
ab + bc + ca ≤ 0 ≤ abc.

Solution 5. The desired number n equals 14499
Adding algorithm gives that

S(2n) = 2 ∗ S(n) − 9k,

where k is a number of digits in n which are greater then 4. Using this we rewrite
the equation to the form 4S(n) = 3(2S(n) − 9k), or equivalently 2S(n) = 27k. It
follows 27 | S(n) > 0. Case S(n) ≥ 54 means that n is written by at least 6 digits.

For S(n) = 27 the number n has just two digits greater than or equal to 5,
remaining at least (27 − 2 · 9) : 4 ≥ 3 digits are at most 4. The least desired n
consists of at least 5 digits, two of them are greater than 4. In the least n such
digits are the greatest possible last two and the remaining three are the first. By
easy argumentation we obtain n = 14499.



Solution 1. Let N is the meet point of BC and GD. From |CG| : |CM | = 2 : 3
it follows |BN | = 1/3|BC| and |GN | = 2/3|MB| = 1/3|AB|. This yields
|CN | = 2/3|BC| and |DN | = |DG| − 1/3|AB| = |AB| − 1/3|AB| = 2/3|AB|.
Triangles BNG and CND are homothetic with the centre N and coefficient −2
which follows the parallelism.

Other solution. Let SXY Z be the area of a triangle XY Z. Then SBCG =
1/3 SABC = SABG = SDBG which follows the parallelism of BG and CD.
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Solution 2. The triple satisfies

ab − 588c − 2024 = 14
√

3 (ac − b).

Rationality of the lhs gives b = ac, i.e.

c(a2 − 588) = 2024.

Maximal a means minimal positive integer c. For c = 1 it is a2 = 2612 where a is
not integer, for c = 2 it is a2 = 1600 with a = 40. The desired triple is (40, 80, 2).

Solution 3. Let an isosceles triangle ABC with interior angles α = β, γ (in
the natural order) satisfies the problem. According to the problem conditions it
is sufficient to consider a cutting line going through the triangle vertex. We will
show that only triangles with the interior angles (45◦, 45◦, 90◦), (36◦, 36◦, 108◦),
(72◦, 72◦, 36◦) and ((540/7)◦, (540/7)◦, (180/7)◦) satisfy the problem.

(1) γ = 90◦ (right-angled isosceles triangle). The cutting line goes through the
point C obviously, it is its altitude and it corresponds to the first solution.

(2) γ > 90◦ (obtuse isosceles triangle). The cutting line through the point C
(obviously) meets the point D ∈ AB and wlog the angle CDB is obtuse.
Then |ADC| = 1

2(180◦ − (90◦ − 1
2γ)) = 45◦ + 1

4γ and |BDC| = γ. This



follows
180◦ = |ADC| + |BDC| = (45◦ + 1

4γ) + γ, a tedy γ = 108◦,

which corresponds with the second solution.
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(3) γ < 90◦. The cutting line must go through A or B, wlog A, and meets the

point E ∈ BC. We distinguish two cases according to AE is the base or
the leg of the triangle ABE.
(a) AE is the leg. Then

180◦ = |AEB| + |AEC| = (90◦ − 1
2γ) + (180◦ − 2γ), tedy γ = 36◦,

the third solution,
(b) AE is the base. Then

180◦ = |AEB| + |AEC| = (45◦ + 1
4γ) + (180◦ − 2γ), tj. γ = 180◦/7,

the fourth solution finally.
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Solution 4. Let ⌊
√

n⌋ = k. The n could be written in the form k2 + z =
(k − 1)2 + 2(k − 1) + 1 + z, where 0 ≤ z ≤ 2k. The assumption k − 1 | k2 + z
means k − 1 | z + 1.

• For k = 1 there is no solution.
• For k = 2 all permissible z ∈ ⟨0, 4⟩ satisfy, i.e 5 solutions.



• For k = 3 only even z ∈ ⟨0, 6⟩ satisfies, i.e 3 solutions.
• For k = 4 only z ∈ {2, 5, 8} ⊂ ⟨0, 8⟩ satisfies, i.e three solutions.
• For k > 4 the inequality 3(k − 1) > 2k + 1 ≥ z + 1 holds, so we have only

2 possibilities to satisfy k − 1 | z + 1:
(1) z + 1 = k − 1, i.e. z = k − 2. Since k > 4, z ∈ ⟨0, 2k⟩ holds. Then

n = k2 + k − 2. The maximal k satisfying n < 2024 is 44, in this case
we have k = 5, 6, . . . , 44, i.e. 40 possibilities.

(2) z + 1 = 2k − 2, i.e. z = 2k − 3. analogically z ∈ ⟨0, 2k⟩. Then
n = k2 + 2k − 3. As in the previous case we obtain k = 5, 6, . . . , 44,
i.e 40 possibilities once more.

Altogether we have 5 + 3 + 3 + 40 + 40 = 91 suitable numbers n.

Solution 5. No. Both numbers have the same number of digits, this implies
their ratio lies between 1/10 and 10, precisely 1/8 and 8. These two powers of 2
would need to be congruent modulo 9. Meanwhile their difference can only be
2a+1 − 2a = 2a, 2a+2 − 2a = 3 · 2a or 2a+3 − 2a = 7 · 2a. None of them is divisible
by 9.

Solution 6. If there is 1 anywhere, then the complete row and complete column
are filled with 1’s, so 1’s are everywhere. Now say there are no 1’s on the board.
Let n be the greatest number present on the board. Then together in the row and
column containing n we need to have n distinct values. But only n − 1 different
values (i.e. 2 to n) are available (as we assumed there are no 1’s) – contradiction.


