CAPS Match 2024: Solutions

ISTA, Austria
June 30 — July 3, 2024

Problem 1. Determine whether there exist 2024 distinct positive integers satisfying
the following: If we consider every possible ratio between two distinct numbers (we in-
clude both a/b and b/a), we will obtain numbers with finite decimal expansions (after the

decimal point) of mutually distinct non-zero lengths. (Patrik Bak, Slovakia)
Solution. We will show these numbers exist. For that we define sequences aq, ao, . . ., g4
and by, ba, . .., bygos and then consider numbers ¢; = 2% - 5% for i = 1,2,...,2024.

We choose the sequences a; and b; in such a way that a; is increasing, b; is decreasing,
and the differences a; — a; and b; — b; were all mutually distinct for all indices ¢ > j. This
will be enough because

i 2ai . 5b,~ 2ai—a;

cj 2% -5k  5bi=bi’
this number has a decimal expansion of a length b; — b;, whereas analogously, Z—’ has a
length of a; — a;.

We now construct the needed sequences, starting with a;. We will do it inductively.
Take ay = 1, as = 2. When we have the numbers aq, as, . . ., a;, then by choosing a; 1 = 2a;
we will achieve a;,1 — a; > a; — aq, therefore all newly added differences will be higher
than the previous ones.

We can construct b; similarly, starting at the end by taking bogos = a9924, then bogeg =
2bogo4, and so on. Since bogog — bogas = a9p24, all the differences in b; will be at least

bao23 — bao24 = @202 . .
Remark: In our construction, a; = 2=! and b; = 24049—¢,
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Problem 2. For a positive integer n, an n-configuration is a family of sets (A; j)1<; j<n-
An n-configuration is called sweet if for every pair of indices (i,7) with 1 < i <n —1
and 1 < j <n wehave A, ; C A1y and A, C AJ i+1- Let f(n, k) denote the number of

sweet n-configurations such that A,,,, C {1,2,...,k}. Determine which number is larger:
£(2024,2024%) or f(2024%2024). (Wojciech Nadara, Poland)
Solution. Consider a sweet n-configuration (A; ;)1<; j<, With A,,, C {1,2,...,k}. For

any r € {1,2,...,k} and i € {1,2,...,n} define

pa(i) = {j: w € Ay}

Since A;; C A, j41 for all suitable 4, j, the set {j: © € A;;} consists of p,(i) largest ele-
ments of {1,2,...,n}. Since A; ; C A, for all suitable 4, j, the function p,: {1,2,...,n} —
{0,1,2,..., n} is nondecreasing. Therefore every sweet n-configuration determines a fam-
ily (ps)1<z<k of nondecreasing functions p,: {1,2,...,n} — {0,1,...,n}. Conversely, ev-
ery such a family determines a sweet n-configuration (A4; ;)1<; j<, with 4,,,, C {1,2,...,k}
in the following way: A;; = {z € {1,2,...,k}: j > n+1—p,(i)}. Therefore f(n,k) =
g(n)* where g(n) is the number of nondecreasing functions p: {1,2,...,n} — {0,1,...,n}.

Using the stars-and-bars method, there is a bijection between the family of nondecreas-
ing functions p: {1,2,...,n} — {0,1,...,n} and the set of sequences consisting of n stars
and n bars. The bijection is given by

—— N — N — ———— N —
p(1)  p(2)=p(1) p(3)-p(2) p(n)=p(n—1)  n—p(n)

Thus g(n) = (*").

The problemnboils down to determining which of the numbers

om\" 2n2\"
n n2 )’

where n = 2024, is larger. Note that

2
2n2 'n,_2 2+ n 2+ n—1 n 2+ + n—1 2+ + n
( Q)ZMZH(" . Z)zHHw>H(w) _
n H" ; ? =L g+ - m+n
= j=0
+

i=1" i=1
1:[ n+j+1 ﬁn j n_ 2n\"
iy e T n

and therefore
<2n2>” (Zn)n
> .
n? n
Remark: A sketch of a slightly different way of thinking about f(n,k)= ( ) Consider
an n x n table. In a cell with coordinates (i, j), list all the elements of the set A; ;. Fix
an element z € {1,...,k} and consider the cells that contain the number x. By the

condition, those cells form a region closed under making a step right and making a step
up. Such regions are delimited by grid paths that start at [0,n], end at [n,0], and only

steps right or down. There are (2:) possible paths for each z, thus f(n, k) = (%?)k
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Problem 3. Let ABC' be a triangle and D a point on its side BC. Points E, F
lie on the lines AB, AC beyond vertices B, C, respectively, such that BE = BD and
CF = CD. Let P be a point such that D is the incenter of triangle PEF. Prove that
P lies inside the circumcircle Q of triangle ABC or on it. (Josef Tkadlec, Czech Republic)

Solution. Let w the circumcircle of triangle AEF and let I, be the A-excenter of
triangle ABC. First, we prove that I, is the midpoint of the arc EF' of w that does not
contain point A (see the left figure).

To that end, note that since 14 lies on the external angle bisector of /B and BE = BD,
triangles BEI4 and BDI, are congruent (SAS). Similarly, triangles CF 14 and C DI, are
congruent, so in particular I4F = I4F. Moreover, /BEI, + /CFIy = /ZBDI4 +
ZC DI, = 180, hence the points A, E, I4, F' lie on a single circle in this order.

Next, we prove that P is the second intersection of /4D and w (see the middle figure).
Let I be the incenter of triangle ABC. Then ED || Bl and DF || IC. Setting ZEAF = «,
we get /ZEDF = /BIC =90 + %oz, thus ZEPF =a = /ZFEAF, so P lies on w. Since I4
is the midpoint of arc, it lies on the angle bisector PD, so P lies both on /4D and on w
as claimed.

Finally, we show that P lies on that arc of w which lies inside € (see the right figure).
Let M # A be the second intersection of w and € (if they are tangent, we set M = A).
Then M is the center of the spiral similarity that maps BE to C'F' (alternatively, we angle-
chase that triangles M BE and M CF are similar by AA). Thus MB/MC = BE/CF =
BD/DC, so M D is the angle bisector of BMC', and so it passes through the midpoint S
of the arc BC of () that does not contain A.

Now forget about points B, C, E, F and focus on circles €2, w and on the points A, M,
14, S, D, P. Circles € and w share points A and M. Being the A-excenter of ABC, point
I4 belongs to that arc AM of w which lies outside of Q (e.g. since A4, > AS). Point
S lies on the segment Al4 and point D lies on the segment SM, so point D lies inside
the angle AI4M. Thus, point P = I4D Nw belongs to the other arc AM of w than 14,
namely to the one which lies inside (2.
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Problem 4. Let ABCD be a quadrilateral, such that AB = BC' = C'D. There are
points X, Y on rays C A, BD, respectively, such that BX = CY. Let P, QQ, R, S be the
midpoints of segments BX, C'Y, XD, Y A, respectively. Prove that points P, @, R, S lie
on a circle. (Michal Pecho, Slovakia)

Solution. Let M be the midpoint of XY. Note that PR is midline in triangles X BD
and X BY, hence M lies on PR. Analogously M lies on @.S.

Let w; be a circle with center B and radius AB = BC and wy be a circle with center
C and radius BC = CD.

Distance of X from center of wy is the same sa distance of Y from center of wy, and also
wy and wy have radius of same size, hence power of X with respect to w; is the same as
power of Y with respect to ws, so

XA-XC=YD- -YB.

Using homotheties centered at X, Y we get that M S - MQ) = MR- M P and thus points
P, Q, R, S lie on a circle.

X v X




5

Problem 5. Let a # 0 be a real number. Determine all functions f: R — R such that

fl@®+y%) = fle—y)fle+y) +ayf(y)
holds for all z, y € R. (Walther Janous, Austria)

Solution.  Answer: For every a # 0, the zero function and the function with value 1
at 0, but 0 elsewhere are solutions. For a = 2, the identity function x + x is another
solution.

Solution-check. The linear function clearly works. Consider the function f such that
f(0) =1 and f(z) = 0 otherwise. Note that yf(y) = 0 for all real numbers y. Then it is
sufficient to realize that f(x? + y?) # 0 iff v = 0 Ay = 0. Similarly f(x —y)f(z +y) #0
ifte4+y=2—y=0< 2 =0Ay =0 which shows that also this function is a solution.

Proof. Denote by P(x,y) the proposition in the problem statement. Comparing P(z,y)
with P(x, —y) yields f(y) = —f(—y) for all y # 0. Using this equality, P(y, z) shows that
2f(x—y)f(z+y) = alzf(z) —yf(y)) for x # y. Plugging this into the original equation,
we obtain

J@* +9?) = S @f(2) + y(4)

for x # y. Setting y = 0 in this equation shows f(2?) = axf(x)/2 for x # 0, whereas
P(z,0) gives f(2%) = f(x)? for all x € R. Hence axf(z)/2 = f(x)?, that is, f(z) =0 or
f(z) = ax/2 for x # 0. In particular, if f(z) # 0, then f(z) = ax/2. On the other hand,
P(0,0) shows f(0) = f(0)? and therefore f(0) =0 or f(0) = 1.

Consider first the case that f(z) = 0 for all  # 0. Then both possible values for f(0)
yield functions fulfilling the original equation (if (x,y) # (0,0), all terms in P(z,y) are
zero anyway and (x,y) = (0,0) was treated before).

Now for the other case: There is a real number z # 0 satisfying f(z) = az/2. Then
f(z%) = f(2)? = (a/2)%2% # 0, and hence f(z?) = (a/2)z?. By comparing the last two
statements, we obtain o = 2 and then f(z) = 2.

e f(0) =1. Consider P(z/2,2/2): f(2*/2) = z+2f(z/2). The left-hand side is 0 or
2?/2, the right-hand side z or z+2%/2. Since z # 0, only 2?/2 = z <= 2z =2 and
0=2z+2%/2 < z= —2 are possible. Either way, f(2) = 2 and f(-2) = -2,
because f is odd. But then f(4) = f(2?) = f(2)? = 4, which is impossible, because

we just proved that z = 2 and z = —2 are the only real numbers with f(z) = z.
e f(0) = 0. We show that f(x) = 0 for all positive reals = if f is not the identity
function:

(1) There are 0 < a < b with f(a) =0, f(b) = b. Then P(z,y) for 2 = vb—a
and y = \/a yields

0#b=f()=flx—y)flz+y)+2f(a) = fz —y)f(x +y),
hence f(z—y) =z —yand f(x+y) =z +y and b = 2% —y*> = b— 2a, forcing
the contradiction a = 0.
(2) There are 0 < a < b with f(a) = a, f(b) = 0. Analogous to Case [l we arrive
at the contradiction b = 0 when investigating P(v/b — a,/a).
Except for the identity, we only have f(x) = 0 for z > 0 and thus f(x) = 0 for
x # 0 as possible solution, which we have already found and treated before.
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Problem 6. Determine whether there exist infinitely many triples (a, b, ¢) of positive
integers such that p divides L(a + by 2024)pj — ¢ for every prime p.

Note: |x| denotes the largest integer not larger than x. (Walther Janous, Austria)

Solution.
Let D := 2024. Consider any pair of positive integers (a, b) such that 0 < a —byv/D < 1.
One can easily find an infinite number of such pairs by choosing a = fb\/ﬁ] Then

(a+ VD + (0 — bWD)P =20 + 23 ( 2?;) Bk e 7,
k=1
is larger than (a+bv/D)P, since we add a positive term, but it is smaller than (a+bv/D)P41.
As it is integer and p | (2’;) forall 1 <k < p%l, we see that

L(a + b\/ﬁ)pJ = (a+bVD)? + (a —bVD) — 1

=2a? +2 Z (ka) aP"*p?**DF —1=2a -1 (mod p)
k=1

by Fermat’s little theorem. Observe that this congruence is also valid for p = 2, although
24 (2?1), because the sum is taken twice anyway. Therefore, choosing ¢ := 2a — 1, we get
D | L(a + b\/ﬁ)pJ — ¢ for all primes p.

In summary, for any positive integer b we get a triple ([sqrt2024b], b, 2[sqrt2024b] — 1)
that has the desired property.



