
CAPS Match 2024: Solutions

ISTA, Austria
June 30 – July 3, 2024

Problem 1. Determine whether there exist 2024 distinct positive integers satisfying
the following: If we consider every possible ratio between two distinct numbers (we in-
clude both a/b and b/a), we will obtain numbers with finite decimal expansions (after the
decimal point) of mutually distinct non-zero lengths. (Patrik Bak, Slovakia)

Solution. We will show these numbers exist. For that we define sequences a1, a2, . . . , a2024
and b1, b2, . . . , b2024 and then consider numbers ci = 2ai · 5bi for i = 1, 2, . . . , 2024.

We choose the sequences ai and bi in such a way that ai is increasing, bi is decreasing,
and the differences ai− aj and bj − bi were all mutually distinct for all indices i > j. This
will be enough because

ci
cj

=
2ai · 5bi
2aj · 5bj

=
2ai−aj

5bj−bi
,

this number has a decimal expansion of a length bj − bi, whereas analogously, cj
ci

has a
length of ai − aj.

We now construct the needed sequences, starting with ai. We will do it inductively.
Take a1 = 1, a2 = 2. When we have the numbers a1, a2, . . . , ai, then by choosing ai+1 = 2ai
we will achieve ai+1 − ai > ai − a1, therefore all newly added differences will be higher
than the previous ones.

We can construct bi similarly, starting at the end by taking b2024 = a2024, then b2023 =
2b2024, and so on. Since b2023 − b2024 = a2024, all the differences in bi will be at least
b2023 − b2024 = a2024.

Remark: In our construction, ai = 2i−1 and bi = 24049−i.
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Problem 2. For a positive integer n, an n-configuration is a family of sets ⟨Ai,j⟩1≤i,j≤n.
An n-configuration is called sweet if for every pair of indices (i, j) with 1 ≤ i ≤ n − 1
and 1 ≤ j ≤ n we have Ai,j ⊆ Ai+1,j and Aj,i ⊆ Aj,i+1. Let f(n, k) denote the number of
sweet n-configurations such that An,n ⊆ {1, 2, . . . , k}. Determine which number is larger:
f(2024, 20242) or f(20242, 2024). (Wojciech Nadara, Poland)

Solution. Consider a sweet n-configuration ⟨Ai,j⟩1≤i,j≤n with An,n ⊂ {1, 2, . . . , k}. For
any x ∈ {1, 2, . . . , k} and i ∈ {1, 2, . . . , n} define

px(i) = |{j : x ∈ Ai,j}| .
Since Ai,j ⊆ Ai,j+1 for all suitable i, j, the set {j : x ∈ Ai,j} consists of px(i) largest ele-
ments of {1, 2, . . . , n}. Since Ai,j ⊆ Ai+1,j for all suitable i, j, the function px : {1, 2, . . . , n} →
{0, 1, 2, . . . , n} is nondecreasing. Therefore every sweet n-configuration determines a fam-
ily ⟨px⟩1≤x≤k of nondecreasing functions px : {1, 2, . . . , n} → {0, 1, . . . , n}. Conversely, ev-
ery such a family determines a sweet n-configuration ⟨Ai,j⟩1≤i,j≤n with An,n ⊂ {1, 2, . . . , k}
in the following way: Ai,j = {x ∈ {1, 2, . . . , k} : j ≥ n + 1 − px(i)}. Therefore f(n, k) =
g(n)k where g(n) is the number of nondecreasing functions p : {1, 2, . . . , n} → {0, 1, . . . , n}.

Using the stars-and-bars method, there is a bijection between the family of nondecreas-
ing functions p : {1, 2, . . . , n} → {0, 1, . . . , n} and the set of sequences consisting of n stars
and n bars. The bijection is given by

p −→ ∗ ∗ . . . ∗︸ ︷︷ ︸
p(1)

| ∗ ∗ . . . ∗︸ ︷︷ ︸
p(2)−p(1)

| ∗ ∗ . . . ∗︸ ︷︷ ︸
p(3)−p(2)

| . . . | ∗ ∗ . . . ∗︸ ︷︷ ︸
p(n)−p(n−1)

| ∗ ∗ . . . ∗︸ ︷︷ ︸
n−p(n)

Thus g(n) =
(
2n
n

)
.

The problem boils down to determining which of the numbers(
2n

n

)n2

,

(
2n2

n2

)n

,

where n = 2024, is larger. Note that

(
2n2

n2

)
=

∏n2

i=1(n
2 + i)∏n2

i=1 i
=

n2∏
i=1

(
n2 + i

i

)
=

n−1∏
j=0

n∏
i=1

n2 + jn+ i

jn+ i
>

n−1∏
j=0

(
n2 + jn+ n

jn+ n

)n

=

=
n−1∏
j=0

(
n+ j + 1

j + 1

)n

=

(
n∏

j=1

n+ j

j

)n

=

(
2n

n

)n

and therefore (
2n2

n2

)n

>

(
2n

n

)n2

.

Remark: A sketch of a slightly different way of thinking about f(n,k)=
(
2n
n

)k: Consider
an n × n table. In a cell with coordinates (i, j), list all the elements of the set Ai,j. Fix
an element x ∈ {1, . . . , k} and consider the cells that contain the number x. By the
condition, those cells form a region closed under making a step right and making a step
up. Such regions are delimited by grid paths that start at [0, n], end at [n, 0], and only
steps right or down. There are

(
2n
n

)
possible paths for each x, thus f(n, k) =

(
2n
n

)k.
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Problem 3. Let ABC be a triangle and D a point on its side BC. Points E, F
lie on the lines AB, AC beyond vertices B, C, respectively, such that BE = BD and
CF = CD. Let P be a point such that D is the incenter of triangle PEF . Prove that
P lies inside the circumcircle Ω of triangle ABC or on it. (Josef Tkadlec, Czech Republic)

Solution. Let ω the circumcircle of triangle AEF and let IA be the A-excenter of
triangle ABC. First, we prove that IA is the midpoint of the arc EF of ω that does not
contain point A (see the left figure).

To that end, note that since IA lies on the external angle bisector of ∠B and BE = BD,
triangles BEIA and BDIA are congruent (SAS). Similarly, triangles CFIA and CDIA are
congruent, so in particular IAE = IAF . Moreover, ∠BEIA + ∠CFIA = ∠BDIA +
∠CDIA = 180, hence the points A, E, IA, F lie on a single circle in this order.

S

IA

A

B C

D

E

F

ω

IA

A

B C

D

E

F

P
ω

M

IA

A

B C

D

E

F

P
ω

I
Ω

Next, we prove that P is the second intersection of IAD and ω (see the middle figure).
Let I be the incenter of triangle ABC. Then ED ∥ BI and DF ∥ IC. Setting ∠EAF = α,
we get ∠EDF = ∠BIC = 90 + 1

2
α, thus ∠EPF = α = ∠EAF , so P lies on ω. Since IA

is the midpoint of arc, it lies on the angle bisector PD, so P lies both on IAD and on ω
as claimed.

Finally, we show that P lies on that arc of ω which lies inside Ω (see the right figure).
Let M ̸= A be the second intersection of ω and Ω (if they are tangent, we set M = A).
Then M is the center of the spiral similarity that maps BE to CF (alternatively, we angle-
chase that triangles MBE and MCF are similar by AA). Thus MB/MC = BE/CF =
BD/DC, so MD is the angle bisector of BMC, and so it passes through the midpoint S
of the arc BC of Ω that does not contain A.

Now forget about points B, C, E, F and focus on circles Ω, ω and on the points A, M ,
IA, S, D, P . Circles Ω and ω share points A and M . Being the A-excenter of ABC, point
IA belongs to that arc AM of ω which lies outside of Ω (e.g. since AIA > AS). Point
S lies on the segment AIA and point D lies on the segment SM , so point D lies inside
the angle AIAM . Thus, point P = IAD ∩ ω belongs to the other arc AM of ω than IA,
namely to the one which lies inside Ω.
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Problem 4. Let ABCD be a quadrilateral, such that AB = BC = CD. There are
points X, Y on rays CA, BD, respectively, such that BX = CY . Let P , Q, R, S be the
midpoints of segments BX, CY , XD, Y A, respectively. Prove that points P , Q, R, S lie
on a circle. (Michal Pecho, Slovakia)

Solution. Let M be the midpoint of XY . Note that PR is midline in triangles XBD
and XBY , hence M lies on PR. Analogously M lies on QS.

Let ω1 be a circle with center B and radius AB = BC and ω2 be a circle with center
C and radius BC = CD.

Distance of X from center of ω1 is the same sa distance of Y from center of ω2 and also
ω1 and ω2 have radius of same size, hence power of X with respect to ω1 is the same as
power of Y with respect to ω2, so

XA ·XC = Y D · Y B.

Using homotheties centered at X, Y we get that MS ·MQ = MR ·MP and thus points
P , Q, R, S lie on a circle.
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Problem 5. Let α ̸= 0 be a real number. Determine all functions f : R → R such that
f(x2 + y2) = f(x− y)f(x+ y) + αyf(y)

holds for all x, y ∈ R. (Walther Janous, Austria)

Solution. Answer: For every α ̸= 0, the zero function and the function with value 1
at 0, but 0 elsewhere are solutions. For α = 2, the identity function x 7→ x is another
solution.

Solution-check. The linear function clearly works. Consider the function f such that
f(0) = 1 and f(x) = 0 otherwise. Note that yf(y) = 0 for all real numbers y. Then it is
sufficient to realize that f(x2 + y2) ̸= 0 iff x = 0 ∧ y = 0. Similarly f(x− y)f(x+ y) ̸= 0
iff x+ y = x− y = 0 ⇔ x = 0 ∧ y = 0 which shows that also this function is a solution.
Proof. Denote by P (x, y) the proposition in the problem statement. Comparing P (x, y)
with P (x,−y) yields f(y) = −f(−y) for all y ̸= 0. Using this equality, P (y, x) shows that
2f(x− y)f(x+ y) = α(xf(x)− yf(y)) for x ̸= y. Plugging this into the original equation,
we obtain

f(x2 + y2) =
α

2
(xf(x) + yf(y))

for x ̸= y. Setting y = 0 in this equation shows f(x2) = αxf(x)/2 for x ̸= 0, whereas
P (x, 0) gives f(x2) = f(x)2 for all x ∈ R. Hence αxf(x)/2 = f(x)2, that is, f(x) = 0 or
f(x) = αx/2 for x ̸= 0. In particular, if f(x) ̸= 0, then f(x) = αx/2. On the other hand,
P (0, 0) shows f(0) = f(0)2 and therefore f(0) = 0 or f(0) = 1.

Consider first the case that f(x) = 0 for all x ̸= 0. Then both possible values for f(0)
yield functions fulfilling the original equation (if (x, y) ̸= (0, 0), all terms in P (x, y) are
zero anyway and (x, y) = (0, 0) was treated before).

Now for the other case: There is a real number z ̸= 0 satisfying f(z) = αz/2. Then
f(z2) = f(z)2 = (α/2)2z2 ̸= 0, and hence f(z2) = (α/2)z2. By comparing the last two
statements, we obtain α = 2 and then f(z) = z.

• f(0) = 1. Consider P (z/2, z/2) : f(z2/2) = z+ zf(z/2). The left-hand side is 0 or
z2/2, the right-hand side z or z+z2/2. Since z ̸= 0, only z2/2 = z ⇐⇒ z = 2 and
0 = z + z2/2 ⇐⇒ z = −2 are possible. Either way, f(2) = 2 and f(−2) = −2,
because f is odd. But then f(4) = f(22) = f(2)2 = 4, which is impossible, because
we just proved that z = 2 and z = −2 are the only real numbers with f(z) = z.

• f(0) = 0. We show that f(x) = 0 for all positive reals x if f is not the identity
function:
(1) There are 0 < a < b with f(a) = 0, f(b) = b. Then P (x, y) for x =

√
b− a

and y =
√
a yields

0 ̸= b = f(b) = f(x− y)f(x+ y) + 2f(a) = f(x− y)f(x+ y),

hence f(x− y) = x− y and f(x+ y) = x+ y and b = x2− y2 = b−2a, forcing
the contradiction a = 0.

(2) There are 0 < a < b with f(a) = a, f(b) = 0. Analogous to Case 1, we arrive
at the contradiction b = 0 when investigating P (

√
b− a,

√
a).

Except for the identity, we only have f(x) = 0 for x > 0 and thus f(x) = 0 for
x ̸= 0 as possible solution, which we have already found and treated before.
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Problem 6. Determine whether there exist infinitely many triples (a, b, c) of positive
integers such that p divides

⌊
(a+ b

√
2024)p

⌋
− c for every prime p.

Note: ⌊x⌋ denotes the largest integer not larger than x. (Walther Janous, Austria)

Solution.
Let D := 2024. Consider any pair of positive integers (a, b) such that 0 < a− b

√
D < 1.

One can easily find an infinite number of such pairs by choosing a = ⌈b
√
D⌉. Then

(a+ b
√
D)p + (a− b

√
D)p = 2ap + 2

∞∑
k=1

(
p

2k

)
ap−2kb2kDk ∈ Z

is larger than (a+b
√
D)p, since we add a positive term, but it is smaller than (a+b

√
D)p+1.

As it is integer and p |
(
p
2k

)
for all 1 ≤ k ≤ p−1

2
, we see that⌊

(a+ b
√
D)p

⌋
= (a+ b

√
D)p + (a− b

√
D)p − 1

= 2ap + 2
∞∑
k=1

(
p

2k

)
ap−2kb2kDk − 1 ≡ 2a− 1 (mod p)

by Fermat’s little theorem. Observe that this congruence is also valid for p = 2, although
2 ∤
(

2
2·1

)
, because the sum is taken twice anyway. Therefore, choosing c := 2a− 1, we get

p |
⌊
(a+ b

√
D)p

⌋
− c for all primes p.

In summary, for any positive integer b we get a triple (⌈sqrt2024b⌉, b, 2⌈sqrt2024b⌉− 1)
that has the desired property.


