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MEMO 2024 Individual I-1

I-1
Determine all k ∈ N0 for which there exists a function f : N0 → N0 such that f(2024) = k

and
f(f(n)) ≤ f(n + 1) − f(n)

for all n ∈ N0.

Remark. Here N0 denotes the set of nonnegative integers.

Answer. The possible values of f(2024) are 0, 1, 2, . . . , 2023.

Solution. Note that 0 ≤ f(f(n)) ≤ f(n + 1) − f(n), hence f is increasing.

Claim. f(n) ≤ n for all n ∈ N0.

Proof. Suppose indirectly that f(n) > n, i.e., f(n) ≥ n + 1. By monotonicity, this implies
f(f(n)) ≥ f(n + 1). Consequently,

f(n + 1) ≤ f(f(n)) ≤ f(n + 1) − f(n),

leading to f(n) ≤ 0, which contradicts 0 ≤ n < f(n).

The claim immediately yields f(2024) ≤ 2024. However, f(2024) = 2024 is impossible as
it would mean f(f(2024)) = f(2024) = 2024 ≤ f(2025) − f(2024) = f(2025) − 2024 or
4048 ≤ f(2025), contradicting the claim for n = 2025.

On the other hand, for any 0 ≤ k ≤ 2023 the function

f(n) =

0 n ≤ 2023
k n ≥ 2024

satisfies the condition, as f(0) = f(k) = 0, hence f(f(n)) = 0 for all n ∈ N0.

Solution 2. We only give a new proof for the claim.
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Suppose indirectly that f(n) > n. Using the condition of the problem

f(f(n)) ≤ f(n + 1) − f(n)
f(f(n + 1)) ≤ f(n + 2) − f(n + 1)
f(f(n + 2)) ≤ f(n + 3) − f(n + 2)

...
f(f(f(n) − 1)) ≤ f(f(n)) − f(f(n) − 1)

Summing up the inequalities, we get

f(f(n)) ≤ f(f(n)) + f(f(n + 1)) + f(f(n + 2)) + · · · + f(f(f(n) − 1)) ≤ f(f(n)) − f(n),

leading to f(n) ≤ 0, which contradicts 0 ≤ n < f(n).
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I-2
There is a sheet of paper (like this one) on an infinite blackboard. Marvin secretly chooses a
convex 2024-gon P that lies fully on the piece of paper. Tigerin wants to find the vertices of
P . In each step, Tigerin can draw a line g on the blackboard that is fully outside the piece of
paper, then Marvin replies with the line h parallel to g that is the closest to g which passes
through at least one vertex of P . Prove that there exists a positive integer n such that Tigerin
can always determine the vertices of P in at most n steps.

Solution 1. One of the key observations is the following. If 3 answer lines intersect at a
common point X, then X must be a vertex of P .

Let us start by querying the four sides of the paper. This determines a rectangle on the paper
which contains P and each of the sides of the rectangle contain at least one vertex of P .

Let us assume that Q is the convex polygon given by the intersection of the closed half-planes
with the answered line boundaries obtained so far containing P . Let’s call a vertex of Q good
if at least 3 answered lines have passed through it already, and call it bad otherwise.

If we have not found all vertices of P yet, i.e. there are less than 2024 good vertices, then there
must be still at least one bad vertex of Q, since P is inside Q and if all vertices of Q were good,
P couldn’t have more vertices than Q.

Now suppose that we have not found all vertices of P yet. Then we repeat the following until
we have not found all vertices of P yet. Pick B, a bad vertex of Q, and let A and C be its
neighbours on Q, and query for a line parallel with AC outside the paper in half-plane AC

containing B. We claim that repeatedly querying this way results in us finding all vertices of
P in a bounded number of steps.

Let us look at the different cases based on which vertex (or possibly 2 vertices) of P the answer
to this query contains.

A

A′

B

C

C ′

X
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Case 1: The answer passes through B (orange). Then B is a new good vertex. Therefore this
case can happen at most 2024 times.

Case 2: The answer is the line AC itself (blue). Then A and C are points of P . We might or
might not have known this before, but now we additionally know that they are direct neighbors
on P . Therefore this case can happen at most 2024 times as we didn’t know they were direct
neighbours before this query.

Case 3: At least one vertex X of P on the answered line is in the interior of Q. In this case the
answer intersects AB in A′ and BC in C ′ (red line on the figure above). Once a vertex of P

is on the boundary of Q, it can never become an interior point of Q again, therefore this case
can happen at most 2024 times as X was not on the boundary of Q before this query.

Case 4: The vertex (or vertices) of P on the answered line is (are) in the line segment AB or
BC, excluding endpoints. In this case the answer intersects AB in A′ and BC in C ′ (red line
on the figure above) and so either A′ or C ′ is a vertex of P . Once a vertex of P becomes a
vertex of Q, it can never become a non-vertex of Q again, therefore this case can happen at
most 2024 times as A′ and C ′ weren’t vertices of Q before this query.

To summarize, our algorithm is as follows: Pick a bad vertex B. Query for a line parallel to
AC. If we get a line passing through B (orange) or through AC (blue), there is nothing else
to do. Otherwise, pick a new bad B and repeat. All cases can only occur at most 2024 times
each, therefore the algorithm stops and all vertices of Q are good at this point. Then P = Q.

Note: When applying the algorithm we do not know if the current answer is case 3 or case 4.
This solution proves that n = 4 · 2025 suffices.

Solution 2. We present an alternative argument that cases 3 and 4 from the above solution
can happen finitely many times.

Note that in both cases the number of the sides of Q is increased by one.

We can observe that the maximum number of sides of Q is at most 4048, because each side of
Q contains a vertex of P and each vertex of P can be part of at most two sides of Q. This
means that cases 3 or 4 can occur at most 4048 times in a row, as otherwise the number of
sides of Q would increase by at least 4049 times in a row. Thus before the first case 1 or case
2, and between any case 1 and case 2, and after the last case 1 or case 2, at most 4048 steps
can be taken. Thus the algorithm stops in at most 4048 · (2024 + 2024 + 1) steps and we found
P = Q as above.

8



MEMO 2024 Individual I-2

Solution 3. We use the same observation as the previous solution. If 3 answer lines intersect
at a common point X, then X must be a vertex of P . Start by querying the 4 sides of the
paper. Define Q, good vertices and bad vertices as above. In this solution we use the pigeonhole
principle with the observation to find vertices of P .

We will prove that we can always find a new vertex in at most 2024 · 3 + 2 steps if we haven’t
found all vertices of P yet. Hence we find P in at most n = 4 + 2024 · (2024 · 3 + 2) steps. (Note
that we could give a much better n with a bit more care.)

Assume that we have found k < 2024 vertices of P so far. By design, P lies in Q and both are
convex, so if all of Q’s vertices were good, P = Q and we are done. Hence there is at least one
bad vertex of Q.

In case there are two bad neighboring vertices A and B of Q, and let C be the next vertex of
Q after A and B in this order. As the line AB is a side of Q, it must be an answered line, so it
contains a vertex of P . Furthermore, in this line, only the points of segment AB are contained
in Q, hence P has a vertex on segment AB. Choose an arbitrary point C ′ inside the segment
BC, and let us query a line parallel to AC ′ outside the paper in half-plane AC ′ containing B.
It is easy to see that the answer we get must intersect segment AB (possibly going through
one of its endpoints), and it cannot pass through any other vertex of Q. Therefore it cannot
pass through a previously known good vertex. Hence with 2024 · 2 + 1 different such queries
(always choosing a different point C ′ from BC), by the pigeonhole principle there must be a
vertex of P with at least 3 of these answered lines passing through it, and so we found a new
good vertex. So in this case, we find a new vertex in at most 2024 · 2 + 1 many queries.

If there are no neighboring vertices of Q which are both bad, then there must be neighboring
vertices A, B, C with A and C being good, and B being bad. Let us query a line parallel to
AC outside the paper in half-plane AC containing B. We know that the boundary line of the
answer intersects Q, and the given half-plane contains A and C, hence there are 3 options.

If the boundary line goes through B, then it is a new good vertex as this is the third answer
line going through it. In this case we immediately found a new good vertex, so in this case, we
find a new vertex in 1 query.

If the boundary line doesn’t go through B, and also doesn’t go through A and C, then it
must intersect the segments AB and BC at some points A′ and C ′. Then A′ and C ′ become
neighboring bad vertices of the polygon obtained by the intersection of Q with this half-plane,
and so we can apply the previous case to find a new vertex of P in at most 2024 · 2 + 1 queries.
So in this case, we find a new vertex in at most 2024 · 2 + 2 many queries.

Finally, if the boundary line is AC, then the intersection of Q and this half-plane has one less
side. This case can happen at most 2024 times, as in this case we find a side of P . Hence, after
at most 2024 steps we can apply one of the previous cases finding a new good vertex to find a
new vertex of P . So in this case, we find a new vertex in at most 2024 · 3 + 2 many queries.
This finishes the proof.
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Solution 4. Let m = 2024 · 2 + 1. Then, by the pigeonhole principle, if we query m pairwise
non-parallel lines, there is a vertex of P through which at least 3 of the m lines pass through.
Call a vertex of P found if we have already received at least 3 answer lines passing through
it.

We start by asking any m pairwise non-parallel lines outside the paper and asking m lines
parallel to the first m lines so that the paper is in the strips for each pair of parallel lines. Then
there is a vertex A1 of P through which at least 3 answered lines go. However, of each parallel
line pair, at most one can go through A1, so at least m answered lines do not go through A1.
Then there is a vertex A2 ̸= A1 of P through which at least 3 of the answered lines go through.
So we know that A1 and A2 are vertices of P .

Now suppose we already have found vertices A1, A2, . . . , Ak of P forming convex polygon P ′ so
that they are in this order on the boundary of P ′, and suppose that k < 2024. We will show
that we can find a new vertex of P in a bounded number of queries.

We first query a line parallel to A1A2 outside the paper so that P ′ and the queried line fall on
different sides of line A1A2. This tells us either that A1A2 is edge of P , or gives us a line ℓ

parallel to A1A2 containing a vertex of P , which we have not found yet.

When we get the line ℓ, we choose m different points (Xi)1≤i≤m on the perpendicular bisector
of A1A2 such that they lie in between ℓ and A1A2 and all the points of P ′ lie on the same side
of lines A1Xi and A2Xi for all i. We query m lines parallel to A1Xi outside the paper so that
they are closer to A1 than A2 and m lines outside the paper parallel to XiA2 so that they are
closer to A2 than A1.

Notice that from each pair of answered lines (parallel to A1Xi and XiA2 respectively) at least
one must not pass through any found vertex, as the only vertex of P the answers can go through
are A1 and A2, so otherwise line ℓ could not touch P . Thus there are at least m of the 2m

answered lines not passing through any vertex of P ′, hence we find a new vertex.

By repeating the steps above, the first case of finding a side of P can happen at most 2024
times, and if it does not happen, we find a new vertex in at most 1 + 2m queries. Therefore we
find P in at most n = m + m + 2024 + 2022 · (1 + 2m) many steps.
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I-3
Let ABC be an acute scalene triangle. Choose a circle ω passing through B and C which
intersects segments AB and AC again in points D ̸= A and E ̸= A, respectively. Let F be
the intersection of BE and CD. Let G be the point on the circumcircle of ABF such that GB

is tangent to ω. Similarly, let H be the point on the circumcircle of ACF such that HC is
tangent to ω. Prove that there exists a point T ̸= A, independent of the choice of ω, such that
the circumcircle of AGH passes through T .

Solution. We will prove that BG and CH are symmetric in the perpendicular bisector of
BC.

First, we will show ∠CBG = ∠HCB. Denote the angles ∠EBD = ∠ECD = α, ∠CBF = β,
∠FCB = γ. Due to the tangency, ∠ABG = ∠DCB = γ and ∠HCA = ∠CBE = β. From
this we can see that both angles ∠CBG and ∠HCB are equal to α + β + γ.

Now, we will prove that BG = CH, which will be enough to show the symmetry. Firstly,
notice that due to ∠FBA = ∠ACF , the circumcircles of ABF and ACF have the same radii.
We will prove that ∠GAB = 180◦ − ∠CAH and that will be enough. We will do it by angle
chasing:

∠GAB + ∠CAH = (180◦ − ∠BGA − ∠ABG) + (180◦ − ∠AHC − ∠HCA) =
(∠AFB − γ) + (∠CFA − β) = (∠AFB + ∠CFA) − (β + γ) =

(360◦ − ∠BFC) − (180◦ − ∠BFC) = 180◦.

Finally, the claim is now obvious due to symmetry: Let T be the reflection of A in the per-
pendicular bisector of BC. Then, A, T, G, H are clearly concyclic due to symmetry and T is
independent from D and E, therefore the solution is complete.

A

B C

D

E

F

G
H

ω

α

β

γ

α

β

γ
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Solution 2. We will work on the projective plane.

Claim. Lines BG, AF, CH are concurrent.

Proof. Apply Pascal’s theorem on the hexagon BBECCD inscribed in ω: as BE ∩ CD = F

and BD ∩ CE = A, we get these two points with the intersection of the tangents at B and C

are collinear.

Denote the point of concurrence by P . By the power of point, PG ·PB = PA ·PF = PH ·PC,
so we conclude that BCHG is cyclic. Since lines BG, CH are symmetric with respect to the
perpendicular bisector of BC, we have that BCHG is an isosceles trapezoid. (If P happens to
be a point at infinity, we have that quadrilaterals BFAG and CFAH are isosceles trapezoids,
which can only happen if BCHG is also an isosceles trapezoid.)

We finish the problem by noticing that the circumcircle of AGH is symmetric with respect
to the bisector of BC, thus it must pass through T , the reflection of A in the perpendicular
bisector of BC, which is invariant of D and E.

A

B C

D

E

F

G H

P

ω
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Alternative proof of the claim Notice that the intersection of lines BG, CH is the pole of
line BC (with respect to ω). By La Hire’s theorem, it suffices to show that the pole of line
AF lies on BC. Now consider the cyclic quadrilateral BECD. Note that BE ∩ CD = F and
EC ∩ DB = A. Brocard’s theorem tells us that the pole of AF is the intersection of diagonals
BC, DE. This clearly proves our claim.

Solution 3. (based on the solution of Grzegorz Kaczmarek) This solution uses isogonal
conjugacy. We will use the fact that in a quadrilateral ABCD a point P has an isogonal con-
jugate if and only if ∠APB + ∠CPD = 180◦. For a detailed proof, see the comment below.

Similarly to the other solutions, one can prove that ∠BAG + ∠CAH = 180◦, which is the
same as ∠BFG + ∠CFH = 180◦. It follows that in quadrilateral BCHG point F has an
isogonal conjugate. Denote this by F ′. We claim that it is the desired point T .

Firstly, as point F ′ has an isogonal conjugate in BCHG, we have that ∠BF ′C+∠HF ′G = 180◦.
Note that ∠BF ′C = 180◦ − ∠F ′BC − ∠F ′CB = 180◦ − ∠FBG − ∠FCH = 180◦ − (180◦ −
∠FAG) − (180◦ − ∠FAH) = 180◦ − ∠HAG. Thus, ∠HAG = ∠HF ′G, meaning that points
A, G, H, F ′ are, in fact, concyclic.

It remains to show that point F ′ is fixed, or in other words, it is independent of the choice of ω.
Luckily, this is fairly easy: since GB is tangent to ω, ∠F ′BC = ∠FBG = ∠EBG = ∠ECB =
∠ACB, so line BF ′ is fix. Similarly, line CF ′ is fix too, therefore F ′ must be fix, as well. The
proof is complete.

Comment. Let’s discuss isogonal conjugates in order to prove the used fact.

Lemma. Suppose we have two lines, e and f intersecting at O. Let P and Q be two different
points (not lying on any of the lines) such that OP and OQ are isogonal with respect to e and
f (or in other words, lines OP and OQ are symmetric with respect to an angle bisector of lines
e, f). Then, the projections of P and Q in lines e and f all lie on a circle with center being the
midpoint of PQ.

Proof. Denote the projections of P and Q onto lines e and f by Pe, Pf , Qe, Qf , respectively.
Note that quadrilaterals PPeOPf , QQfOQe are similar, as you can obtain one from the other
by a reflection in the angle bisector of lines e, f followed by a suitable homothety with center
O. It follows (from the reflection) that PePf and QeQf are antiparallel, so PePfQfQe is cyclic.
The center of the circle is the intersection of the bisectors of segments PeQe, PfQf . These
bisectors are the midlines of the right-angled trapezoids PPeQeQ, PPfQfQ. Hence, the center
must be the midpoint of PQ.

13
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We use this lemma to show the following property of isogonal conjugates in polygons: a point
P has an isogonal conjugate if and only if its projections onto the sides are concyclic. Indeed,
if the point has an isogonal conjugate P ∗, then for any two adjacent sides the projections of
the two points lie on a circle with center being the midpoint PP ∗, thus all projections must lie
on the same circle. The other direction follows similarly but in reverse: the reflection of P in
the center of the circe through the projections must be the isogonal conjugate (the proof of the
lemma also works in reverse).

O e

f

P

Q

Pe

Pf

Qe

Qf

A B

C

D

X

Y

Z

W

P

Now we are ready to prove our fact. Denote the projections of P onto sides AB, BC, CD, DA by
X, Y, Z, W , respectively. Due to the right angles, we have that quadrilaterals AXPW , BY PX,
CZPY , DWPZ are cyclic. Note that ∠APB + ∠CPD = (∠APX + ∠XPB) + (∠CPZ +
∠ZPD) = ∠AWX + ∠XY B + ∠CY Z + ∠ZWD = 360◦ − ∠XY Z − ∠ZWX. Therefore, we
have

∠APB + ∠CPD = 180◦ ⇐⇒ ∠XY Z + ∠ZWX = 180◦ ⇐⇒ XY ZW is cyclic.

Hence, ∠APB + ∠CPD = 180◦ is equivalent to P having an isogonal conjugate.
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I-4
For any positive integer n, let σ(n) denote the sum of positive divisors of n. Determine all
polynomials P with integer coefficients such that P (k) is divisible by σ(k) for all positive
integers k.

Solution 1. We are going to use the following well-known lemma:

Lemma. For any integers a, b and polynomial p with integer coefficients we have

a − b | p(a) − p(b).

Let p ̸= q be any prime numbers. Then from σ(pq) = (p + 1)(q + 1) we have

(p + 1)(q + 1) | P (pq).

This is equivalent to
pq − (−p − q − 1) | P (pq).

Using this and the lemma for a = pq and b = −p − q − 1 we get that

(p + 1)(q + 1) | P (−p − q − 1).

From this −p − 1 | P (−p − q − 1) also follows. Now using the lemma for a = −p − q − 1 and
b = −q we get that −p − 1 | P (−p − q − 1) − P (−q). Consequently

p + 1 | P (−q)

for any primes p and q. But this implies that P (−q) = 0 for every prime q. Therefore P has
infinitely many roots, thus it is the zero polynomial.

Solution 2. Let p, q be primes, then σ(pq) = (1 + p)(1 + q), so (1 + p)(1 + q) | P (pq). Let
P (x) = ∑deg P

k=0 akxk. Using the fact that pq ≡ −p (mod 1+q), we can conclude the following:

0 ≡ P (pq) ≡
deg P∑
k=0

ak(pq)k ≡
deg P∑
k=0

ak(−p)k ≡ P (−p) (mod 1 + q).

So we have that 1 + q | P (−p) for any p, q prime.

As p, q were arbitrary, we can vary q and obtain P (−p) = 0, and as p was arbitrary, we get
that P (−p) = 0 for all primes p, so P (x) = 0 for all x as desired.
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Solution 3. Let us assume that there is such a polynomial P different from the zero polyno-
mial. Then it has some fixed degree, let us denote it by c.

Let p be any prime. From σ(pk) = 1 + p + . . . + pk we have that

1 + p + . . . + pk | P (pk).

Let us define a new polynomial Pk as follows: Pk(x) := P (xk). We know that 1 + p + . . . + pk |
Pk(pk) for every prime p. But since there are infinitely many primes, and the polynomial
1 + x + . . . + xk has 1 as its main coefficient, it has to divide Pk as a polynomial.

Let us consider any number l, and let d be any divisor of it. Then using the above conclusion
for k = l

d
and plugging xd into x we have

1 + xd + x2d + . . . + xl | P (xl)

(again, as polynomials.)

Let us recall the well-known fact that the greatest common divisor of xm − 1 and xn − 1 (as
polynomials) is xgcd(m,n) −1. We claim that if d1 and d2 are divisors of l and l+d1 and l+d2 are
coprime, then 1 + xd1 + x2d1 + . . . + xl and 1 + xd2 + x2d2 + . . . + xl are coprime too. Indeed the
former divides xl+d1 − 1 and the later divides xl+d2 − 1, and they are not divisible by x − 1.

Now let us take l such that it has divisors d1, d2, . . . , dc+1 with the property that l + di and
l + dj are coprime for any i ̸= j. (It is easy to find such an l.) Then the polynomials
1 + xdi + x2di + . . . + xl are all pairwisely coprime, thus their product divides P (xl). On one
hand from the fact that P has degree c we know that P (xl) has degree lc. On the other hand
it is divisible by the product ∏c+1

i=1(1 + xdi + x2di + . . . + xl), which has degree l(c + 1), which is
a contradiction.

Comment. An alternate ending of Solution 3 from the fact that Qk(x) = 1 + x + . . . xk|P (xk)
for all k is the following.

For all k, the first primitive k-th root of unity (zk+1 = cos
Ä

2π
k+1

ä
+ i sin

Ä
2π

k+1

ä
) is a root of Qk.

Therefore P (zk
k+1) = 0, thus uk = zk

k+1 = cos
Ä

2kπ
k+1

ä
+ i sin

Ä
2kπ
k+1

ä
is a root of P . But if l ̸= k,

then uk ̸= ul, therefore P has infinitely many roots, meaning that P is the zero polynomial.

Solution 4. Let us assume that P is not identically 0, P (x) = xk+1Q(x) + axk (here axk is
the term with the lowest exponent). Let p ∤ a be a prime, and q1, q2, ..., qk+1 be different primes
such that all of them are congruent to −1 modulo p (it is possible to take such primes from the
Dirichlet theorem). Now let N = pq1q2 . . . qk+1. By the fact that σ is multiplicative we have
σ(N) = σ(q1) · σ(q2) · . . . σ(qn) · σ(p) = (q1 + 1) · (q2 + 1) · . . . (qn + 1) · (p + 1), which is divisible
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by pk+1, thus pk+1|σ(N)|P (N), because σ. On the other hand pk+1 does not divide P (N), since
P (N) = Nk+1Q(N) + aNk, and pk+1 ∤ aNk, which is a contradiction.

Solution 5. Let p be any prime number. Choose n, such that p | n, while p2 ∤ n. Then by the
fact that σ is multiplicative, we get p+1 | σ(n) and thus p+1 | P (n). By the Chinese Remainder
Theorem we can get n1, n2 . . . np+1, such that these have all different residues modulo p+1, and
p | ni, while p2 ∤ ni, thus in particular p + 1 | P (ni) for all 1 ≤ i ≤ p + 1. Consider any natural
number k, then there is i such that ni ≡ k (mod p + 1). Thus P (k) ≡ P (ni) (mod p + 1),
therefore p + 1 divides P (k) for every integer k. Since p was any prime we get that P ≡ 0.

Solution 6. First fix a prime p, and substitute pα into the polynomial P . Then we have

σ(pα) = pα+1 − 1
p − 1 |P (pα).

So for infinitely many natural numbers n, we have pn−1
p−1 |P (n). For rational numbers r, s ∈ Q,

we denote by r|s if s
r

∈ Z. We will need the following lemma.

Lemma. Given two polynomials Q, R ∈ Q[x] such that for infinitely many n ∈ Z we have
Q(n)|R(n), then Q(x)|R(x) in Q[x].

Proof. Since Q[x] is a Euclidian domain, R(x) can be written as follows R(x) = Q(x)S(x) +
T (x), where deg T ≤ deg Q. There is a positive integer N , such that R′(x) := N2·R(x), Q′(x) :=
N · Q(x), S ′(x) := N · S(x), T ′(x) := N2 · T (x) have all integer coefficients. Now the same
equation holds for the modified polynomials: R′(x) = Q′(x)S ′(x) + T ′(x). Also the property
that for infinitely many n we have Q′(n)|R′(n) remains true. Combining these we get that
Q′(n)|T ′(n) for infinitely many n. But T ′ has smaller degree than Q′, so for large enough n,
|T ′(n)| < |Q′(T )|, therefore T ′ ≡ 0.

Applying the lemma we get that for all prime p we have px−1
p−1 |P (x), so P has infinitely many

roots, thus it is the zero polynomial.
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T-1
Consider the two infinite sequences a0, a1, a2, . . . and b0, b1, b2, . . . of real numbers such that
a0 = 0, b0 = 0 and

ak+1 = bk, bk+1 = akbk + ak + 1
bk + 1

for each integer k ≥ 0. Prove that a2024 + b2024 ≥ 88.

Solution. Let us notice that ai is the same as the sequence bi shifted by one. So the whole
problem might be reduced to the sequence of bi. The definition of bk+1 can be rewritten as:

bk+1 = akbk + ak + 1
bk + 1 = ak + 1

bk + 1 = bk−1 + 1
bk + 1 .

Now if we define a new sequence Bi = bi + 1, then we arrive at

Bk+1 = Bk−1 + 1
Bk

,

multiplying with Bk gives
BkBk+1 = Bk−1Bk + 1.

Hence, using Ck = BkBk+1 we can see that for any k ≥ 1,

Ck = Ck−1 + 1.

Since C0 = 1 · 2 = 2, we obtain C2023 = 2025. Now we just have to remember that

C2023 = B2023B2024 = (b2023 + 1)(b2024 + 1) = (a2024 + 1)(b2024 + 1).

Using the AM-GM inequality,

45 =
√

2025 =
√

(a2024 + 1)(b2024 + 1) ≤ (a2024 + 1) + (b2024 + 1)
2 ,

which gives 88 ≤ a2024 + b2024, as we seeked to prove.

Solution 2. As in Solution 1, we substitute Bk = bk + 1 and get Bk+1 = Bk−1 + 1
Bk

. Then by
calculating the first few terms, we conjecture that
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Bk =



(k + 1) · (k − 1) · (k − 3) · . . . · 2
k · (k − 2) · (k − 4) · . . . · 1 , if k is odd

(k + 1) · (k − 1) · (k − 3) · . . . · 1
k · (k − 2) · (k − 4) · . . . · 2 , if k is even,

which is easily proven by induction. From this we can see that

B2024 = 2025
B2023

.

The statement we want to prove is equivalent to:

B2023 + 2025
B2023

≥ 90 ⇐⇒ B2
2023 − 90 · B2023 + 2025 ≥ 0 ⇐⇒ (B2023 − 45)2 ≥ 0,

which clearly holds.
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T-2
Find all functions f : R → R such that

yf(x + 1) = f(x + y − f(x)) + f(x)f(f(y))

for all x, y ∈ R.

Answer. The functions f(x) = x for all x ∈ R and f(x) = 0 for all x ∈ R are the only solutions.

Solution.

Claim. f(x) = cx + d is a solution if and only if d = 0 and c = 0 or c = 1.

Proof. It is easy to check that f(x) = 0 and f(x) = x are indeed solutions. There is no more
constant solutions, hence we assume that c ̸= 0 for the rest of the proof.

Plugging in f(x) = cx + d into the functional equation gives

y(c(x + 1) + d) = c(x + y − cx − d) + d + (cx + d)(c(cy + d) + d).

This equation is true for all x, y ∈ R if and only if all the coefficients of the (multivariate)
polynomials equal. Hence, considering the coefficient of xy gives c = c3, so c = 1 or c = −1.

The coefficient of x gives 0 = c − c2 + c2d + cd, hence 0 = 1 − c + d + cd. If c = 1 then d = 0,
and if c = −1 then this gives a contradiction, finishing the proof of the claim.

Assume that f(t0) = 0 for some t0 ∈ R. Plugging in (t0, y) gives

yf(t0 + 1) = f(t0 + y).

It follows that f is linear, hence we are done by the Claim. From now we assume that f(x) ̸= 0
for all x ∈ R.

Plugging in (x, f(x) + 1) gives

f(x)f(x + 1) + f(x + 1) = f(x + 1) + f(x)f(f(f(x) + 1)),

hence
f(x + 1) = f(f(f(x) + 1)). (1)

Claim. f is injective.
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Proof. Assume that f(a) = f(b) for some a ̸= b. It follows from (1) that

f(a + 1) = f(f(f(a) + 1)) = f(f(f(b) + 1)) = f(b + 1).

Plugging in (a, b) and (b, a) into the original equation and using f(a) = f(b) gives

bf(a + 1) = f(a + b − f(a)) + f(a)f(f(b)) = f(b + a − f(b)) + f(b)f(f(a)) = af(b + 1),

hence a = b, as f(a + 1) = f(b + 1) ̸= 0.

By (1) and injectivity we get x + 1 = f(f(x) + 1). Plugging x = −1 gives f(f(−1) + 1) = 0
which contradicts the assumption that f(x) ̸= 0 for all x ∈ R. This finishes the proof.

Solution 2. Throughout the solution fn denotes the n-th iterate of f , i.e., f 1(x) = f(x) and
fn(x) = f(fn−1(x)) for all x ∈ R and n > 1. We only show a second proof for the statement
that if f(x) ̸= 0 for all x ∈ R then there is no solution.

Assume that f(x) ̸= 0 for all x ∈ R. Plugging in (x, f(x)) gives

f(x + 1) = 1 + f 3(x)

for all x (upon dividing by f(x) ̸= 0) whereas (x, f(x) + 1) gives

f(x + 1) = f(f(1 + f(x))) = f(1 + f 4(x)) = 1 + f 7(x).

which gives in particular that f 3(x) = f 7(x). We can now compute:

f(x + 2) = 1 + f 3(1 + x)
= 1 + f 2(1 + f 3(x))
= 1 + f(1 + f 6(x))
= 2 + f 9(x)
= 2 + f 5(x)
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and similarly we have

f(x + 3) = 2 + f 5(1 + x)
= 2 + f 4(1 + f 3(x))
= 2 + f 3(1 + f 6(x))
= 2 + f 2(1 + f 9(x))
= 2 + f(1 + f 12(x))
= 3 + f 15(x)
= 3 + f 11(x)
= 3 + f 7(x)
= 2 + f(x + 1)

and we obtain f(x + 2) = f(x) + 2 for all x ∈ R. If we now plug in (x + 2, y) we have

yf(x + 1) + 2y = f(x + y − f(x)) + f(x)f(f(y)) + 2f(f(y))

which gives f(f(y)) = y so f(f(0)) = 0, a contradiction.

Solution 3. We reduce to showing that f(x) = 0 for some x ∈ R, and reduce this to injectivity,
as in Solution 1. Therefore we assume f(x) ̸= 0 for all x ∈ R, but f(x1) = f(x2) = a for some
x1 ̸= x2. Comparing the given equation for (x1, y) and (x2, y) gives

y(f(x1 + 1) − f(x2 + 1)) = f(x1 + y − a) − f(x2 + y − a).

For y = a ̸= 0 we get f(x1 + 1) = f(x2 + 1), so the left side above is identically 0. Therefore

f(x1 + y − a) = f(x2 + y − a)

for all y, so f is periodic with period t = x1 − x2 ̸= 0.

But now comparing the original equation for (x, y) and (x, y + t) for any real x, y we get

tf(x + 1) = 0,

so f attains the value 0.
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T-3
There are 2024 mathematicians sitting in a row next to the river Tisza. Each of them is
working on exactly one research topic, and if two mathematicians are working on the same
topic, everyone sitting between them is also working on it.

Marvin is trying to figure out for each pair of mathematicians whether they are working on the
same topic. He is allowed to ask each mathematician the following question: “How many of
these 2024 mathematicians are working on your topic?” He asks the questions one by one, so
he knows all previous answers before he asks the next one.

Determine the smallest positive integer k such that Marvin can always accomplish his goal with
at most k questions.

Answer. The number of required questions is 2023.

Solution. We solve the problem more generally, for n mathematicians. We will prove that
the answer is n − 1.

By asking the left-most n − 1 mathematicians, Marvin can determine the working groups from
the left to right.

Now we show that n − 2 questions may not be enough. Let xi be the answer of the i-th
mathematician. It is easy to see that x−1

1 +· · ·+x−1
n is the number of different topics studied. All

of the mathematicians will answer 1 or 2 to the question in such a way, that after each question
if a and b are the smallest and largest indices such that the a-th and b-th mathematicians
haven’t been asked by Marvin yet, then x−1

1 + · · · + x−1
a−1 and x−1

b+1 + · · · + x−1
n are integers,

and all values xi with a < i < b that have been already asked satisfy xi = 2. Suppose that
Marvin asked xk just now, and he asked at most n − 3 questions before this, and by induction
the constraint above is satisfied.

• If there are i, j such that 1 ≤ i < k < j ≤ n such that xi and xj haven’t been asked, the
answer will be xk = 2, and it is easy to check that all constraints are still satisfied.

• If for all 1 ≤ i < k Marvin has already asked xi: Let m > k be the largest integer such
that we already asked xj for all k < j ≤ m. This m exists and is less than n since he
asked at most n − 3 questions before this. Therefore, for all k < j ≤ m, xj = 2. By the
induction hypothesis, x−1

1 + · · · + x−1
k−1 is an integer, so the constraint can be satisfied by

answering xk = 2 if m − k is odd and xk = 1 if m − k is even.

• If for all k < i ≤ n Marvin has already asked xi: The answer can be decided similarly as
in the previous case.
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Therefore after n − 2 questions we have the following: Only the a-th and b-th mathematicians
weren’t asked by Marvin, everyone between them answered 2, and everyone not sitting between
them has a research topic different from the a-th and b-th mathematician (the topics can be
reconstructed similarly as in the argument showing that n − 1 questions are always enough).

If b − a is odd, then xa = 1 and xb = 1 can be reconstructed, and xa = 2 and xb = 2 can be
reconstructed as well, so Marvin can’t decide which mathematicians share the same topic.

If b − a is even, then xa = 1 and xb = 2 can be reconstructed, and xa = 2 and xb = 1 can
be reconstructed as well, so again Marvin can’t decide which mathematicians share the same
topic.
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T-4
A finite sequence x1, x2, . . . , xr of positive integers is a palindrome if xi = xr+1−i for all integers
1 ≤ i ≤ r.

Let a1, a2, . . . be an infinite sequence of positive integers. For a positive integer j ≥ 2, denote by
a[j] the finite subsequence a1, a2, . . . , aj−1. Suppose that there exists a strictly increasing infinite
sequence b1, b2, . . . of positive integers such that for every positive integer n, the subsequence
a[bn] is a palindrome and bn+2 ≤ bn+1 + bn. Prove that there exists a positive integer T such
that ai = ai+T for every positive integer i.

Solution. Define a break point to be a positive integer k such that a[k] is a palidrome. Let
c1 < c2 < . . . be a strictly increasing sequence of all break points. Then cn+2 ≤ cn+1 + cn also
holds whenever cn+2 > b2. Namely, if bj−1 < cn+2 ≤ bj, then cn+1 ≥ bj−1 and cn ≥ bj−2.

For positive integers p and q, let p ∼ q denote the fact that ap = aq.
Let x, x+y and x+y+z be three consecutive break points greater than b2. From the condition,
we have z ≤ x. Consider any positive integer r < x.

Since x is a break point, r ∼ x − r.

Since x + y is a break point, x − r ∼ x + y − (x − r) = y + r.

Since x + y + z is a break point, y + r ∼ x + z − r.

Hence, r ∼ x + z − r for all r < x. This implies that x + z is also a break point, which means
y = z since we considered consecutive break points. Repeating this argument for the next three
break points, we can conclude that there exists an arithmetic sequence of break points with
common difference z.

Let (x + nz)n be an arithmetic sequence of break points. Consider any positive integer r.
Let n be a positive integer such that x + nz > r.

Since x + nz is a break point, r ∼ x + nz − r.

Since x + (n + 1)z is a break point, x + nz − r ∼ x + (n + 1)z − (x + nz − r) = z + r.

Hence, the sequence (an)n is periodic with period z, which proves the claim.

Solution 2. Similarly to the first solution, x ∼ y denotes that ax = ay. If we know that a[b] is
palindromic, then x ∼ b − x for all 0 < x < b. The notation a[x, y] denotes (ax, ax+1, ..., ay−1).
Throughout the proof, all variables denote integers.
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We show that the sequence is periodic with b2 − b1. Note that to show this, it suffices to show
that a[bn] is periodic with b2 − b1 for all n. So the problem statement follows from the following
proposition.

Main proposition. a[bn+k] is periodic with bn+1 − bn for all n, k ≥ 1.

We prove the proposition by induction on k.

The case k = 1. If 0 < x < bn then by palindromeness of a[bn] and a[bn+1], we have x ∼ bn −x ∼
bn+1 − (bn − x) = x + (bn+1 − bn), so a[bn+1] is periodic with bn+1 − bn.

The case k = 2. We prove the following helpful lemma:

Lemma. Suppose that t ≥ 1 and 0 < x < y. If a[x] is periodic with t, and a[y] is palindromic,
and 2x − y ≥ t, then a[y] is periodic with t too.

Proof of lemma. Since a[x] is periodic with t, by palindromeness of a[y] we have that a[y −x, y]
is periodic with t too. If the two segments a[x] and a[y − x, y] overlap in at least t elements,
this means that all pairs of distance t in a[y] will be contained in at least one of the segments,
so a[y] is also periodic with t. Here, the overlap is x − (y − x) = 2x − y ≥ t indeed.

To use the lemma here, pick t = bn+1 − bn, x = bn+1 and y = bn+2. We already know that
a[bn+1] is periodic with t (by the k = 1 case), and we have 2x − y ≥ t ⇔ bn+1 + bn ≥ bn+2

indeed, concluding the k = 2 case.

The case k ≥ 3. To prove this case, we show that if a[bn+k−1] is periodic with bn+1 − bn and
a[bn+k] is periodic with bn+2 − bn+1 (both true by the inductive hypothesis) then a[bn+k] is
periodic with bn+1 − bn too.

Let t = bn+1 − bn and ∆ = bn+2 − bn+1.

Then we can inductively show that a[bn+k−1 + ℓ∆] is periodic with t for all ℓ ≥ 0. For ℓ = 0
this is true by the k = 1 case. If for ℓ ≥ 1, we know that a[bn+k−1 + (ℓ − 1)∆] is periodic with
t, then by the periodicity of a[bn+k] with ∆, we have that a[∆, bn+k−1 + ℓ∆] is also periodic
with t. Also, the two t-periodic intervals overlap in at least t elements, as bn+k−1 + (ℓ − 2)∆ ≥
bn+k−1 − ∆ = bn+k−1 − bn+2 + bn+1 ≥ bn+1 − bn ⇔ bn+k−1 + bn ≥ bn+2, true since from k ≥ 3,
bn+k−1 ≥ bn+2. So a[bn+k−1 + ℓ∆] is also periodic with t.

Now choose ℓ so that d − ∆ ≤ bn+k−1 + ℓ∆ ≤ bn+k, giving that we have some 0 ≤ u ≤ ∆ with
a[bn+k − u] being t-periodic. Now by palindromeness of a[bn+k], also a[u, bn+k] is t-periodic,
and the two intervals’ overlap is at least t: bn+k − 2u ≥ t ⇔ 2u ≤ bn+k − bn+1 + bn, and
2u ≤ 2∆ = 2bn+2 − 2bn+1 ≤ bn+k − bn+1 + bn ⇔ 2bn+2 ≤ bn+k + bn+1 + bn, true since bn+2 ≤ bn+k

and bn+2 ≤ bn+1 + bn. So a[bn+k] is t-periodic, finishing the proof.
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Solution 3. We will show that the sequence is periodic with bk − bk−1 where k ≥ 2 is so that
bk − bk−1 = min1≤n bn − bn−1. First, we prove that bk is periodic with bk − bk−1:

x ∼ bk−1 − x ∼ bk − bk−1 + x ∀x < bk−1,

where we have used that bk−1 and bk are palindromic.

We will use the lemma from the above solution. Let’s recall it.

Lemma. Suppose that t ≥ 1 and 0 < x < y. If a[x] is periodic with t, and a[y] is palindromic,
and 2x − y ≥ t, then a[y] is periodic with t too.

Let us apply the lemma repeatedly so that t = bk − bk−1, x = bn−1 and y = bn for n =
k + 1, k + 2, k + 3, . . .. The two conditions in the first sentence of the lemma are clearly
satisfied at such applications, as well as that a[y] is palindromic.

The condition 2x − y ≥ t is equivalent to 2bn−1 − bn ≥ bk − bk−1. Since n ≥ k ≥ 2, we know
that bn−1 + bn−2 ≥ bn. Therefore bn−1 − bn ≥ −bn−2. But since we chose k so that bk − bk−1 is
smallest, we have that 2x − y ≥ t is also satisfied at each application of the lemma.

The only remaining condition is that a[x] = a[bn−1] is periodic with period t. However, since
the lemma states that a[y] = a[bn] is periodic with period t, at each application of the lemma
we get that this condition is also satisfied for the next application. Therefore we get that a[bn]
is periodic with period bk − bk−1 ∀n ≥ k. This finishes the proof.

Solution 4. This solution uses the following lemma.

Lemma. If a palindromic, finite sequence (an)n=l
n=1 of length l is periodic with periods x and y

with x < y and x + y ≤ l + 1, it is periodic with period y − x.

Proof. For r ≤ x − 1, we have r + y ≤ l and x < r + y, so by periodicity with y and x, we have
ar = ar+y = ar+y−x.

For x < r ≤ l − (y − x), we have 1 ≤ r − x ≤ l − y, so by the periodicities we have
ar = ar−x = ar−x+y.

It remains to be proven that ax = ay. In case x + y ≤ l, the first of the two above arguments
works for r = x and shows ax = ay, proving the lemma.

However, in case x + y ≰ l, by the condition of the lemma we have x + y = l + 1. Then by the
palindromic condition, ax = al+1−x = ay. This finishes the proof of the lemma.
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Comment. Via Euler’s algoritm, we may use the lemma repeatedly to give that the sequence
is periodic with gcd(x, y).

As in the previous solution, we use that for all n ≥ 2, a[bn] is periodic with period bn − bn−1.

Then as a[bn] is a subsequence for a[bn+1], we have that a[bn] is also periodic with period
bn+1 − bn.

Now let’s apply the lemma’s remark for a[bn], which we know is palindromic. The two periods
are bn − bn−1 and bn+1 − bn. The condition x + y ≤ l + 1 translates to bn+1 − bn−1 ≤ bn (noting
that l = bn − 1). However, this is satisfied by the problem statement, so we get that a[bn] is
periodic with period gcd(bn − bn−1, bn+1 − bn).

Recalling that a[bn+1] is periodic with period bn+1 − bn, which is a multiple of the period we
got for a[bn]. Since bn+1 − bn ≤ bn−1 ≤ bn − 1, an entire larger period is contained in a[bn].Then
each larger period in a[bn+1] consists of smaller periods of length gcd(bn − bn−1, bn+1 − bn) from
a[bn], so a[bn+1] is also periodic with period gcd(bn − bn−1, bn+1 − bn).

Then substituting n + 1 by n, a[bn] is periodic with period gcd(bn−1 − bn−2, bn − bn−1). So by
the remark, it is periodic with period gcd(bn−1 − bn−2, bn − bn−1, bn+1 − bn). By repeatedly using
the multiple-period argument, substituting n + 1 by n and using the remark, we get that a[bn]
is periodic with gcd(b2 − b1, b3 − b2, . . . , bn+1 − bn).

Since
(

gcd(b2 − b1, b3 − b2, . . . , bn+1 − bn)
)

n
is a strictly decreasing positive integer sequence, it

has a minimum which it achieves at some n = k. Then for p = gcd(b2 −b1, b3 −b2, . . . , bk+1 −bk),
we have that a[bn] is periodic with period p for all n ≥ k. This finishes the proof.

Comment. The lemma is true even if the palindromic condition is dropped. This stronger
formulation requires a more in-depth, harder proof for the case x + y = l + 1, presented below.

Proof. We repeatedly perform the following moves, starting from index x. If the current index
is at most l − x, we increase it by x. If we cannot perform this move, and the index is at least
y + 1, we decrease it by y. If we cannot perform either move, we stop.

If at some point we cannot perform more steps, the index r we have satisfies l − x < r < y + 1,
so r = y. Since at each step the elements of (an)n=l

n=1 at the old and new index are equal due to
periodicity, the elements at the first and last indices in our steps are equal, so ax = ay.

If we can perform the above steps infinitely many times, there will be an index at which we
arrive at least twice. Let r1 be the first such index. Then let the subsequent indices we get by
the above steps from r1 be (rn)n≥0. Since r1 = rk+1 for some index as we arrive at r1 twice, we
know that taking a step from rk takes it to r1, i.e. r1 = rk + x or r1 = rk − y. However, at any
index it is clear that we can only arrive by one type of moves, since then 1 ≤ r − x ≤ l − x and
l − x < r + y ≤ l are both satisfied by r so 1 + x ≤ r ≤ l − y, contradiction as l = x + y − 1.

So the index preceding r1 is also repeated at rk as they cannot be different. So necessarily all
indices repeat. But the index preceding the second time we reach x cannot be 0 = x − x and
also cannot be x+y = l+1, contradiction. So we can never take infinitely many such steps.
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T-5
Let ABC be a triangle with ∠BAC = 60◦. Let D be a point on the line AC such that AB = AD

and A lies between C and D. Suppose that there are two points E ̸= F on the circumcircle
of the triangle DBC such that AE = AF = BC. Prove that the line EF passes through the
circumcenter of ABC.

Solution. Let N be the midpoint of arc BAC. Then triangle NBC is equilateral as ∠BNC =
60◦ and N lies on the perpendicular bisector of BC. Moreover, N lies on the angle bisector of
the angle DAB, which is the perpendicular bisector of segment BD considering the isosceles
triangle ABD. Therefore, N is the circumcenter of triangle DBC.

Since NBC is equilateral, the circumradius of triangle DBC is the length of BC. So, we
have BC = NE = NF and we know that AE = AF = BC, thus AENF is a rhombus. Hence,
the line EF is the perpendicular bisector of AN . However, AN is a chord of the circumcircle
of triangle ABC, so its perpendicular bisector passes through O. The solution is complete.

A

B C

D

E

F

N

60◦
60◦

O

Solution 2. Let k be the circumcircle of triangle DBC and let K be its center. Denote by ω

the circle with center A and radius BC. By definition, E and F are the two intersections of k

and ω. Thus, we need to prove that O lies on the radical axis of the two circles.

Since ∠BAC = 60◦, we have ∠DAB = 120◦, and since AB = AD, we get ∠BDA = ∠BDC =
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30◦. This has two important corollaries. Firstly, by inscribed angles ∠BKC = 60◦ = ∠BAC,
so it follows that K lies on the circumcircle of triangle ABC (as K and A lie on the same side
of line BC). In fact, OA = OK. Secondly, the radius of k is

1
2 · BC

sin∠BDC
= BC

2 sin 30◦ = BC.

Therefore,

Powk(O) = OK2−(radius of k)2 = OK2−BC2 = OA2−BC2 = OA2−(radius of ω)2 = Powω(O).

This finishes the proof.

30◦

60◦

A

B C

D

E

F

O

ω

K

k
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T-6
Let ABC be an acute triangle. Let M be the midpoint of the segment BC. Let I, J , K be the
incenters of triangles ABC, ABM , ACM , respectively. Let P , Q be points on the lines MK,
MJ , respectively, such that ∠AJP = ∠ABC and ∠AKQ = ∠BCA. Let R be the intersection
of the lines CP and BQ. Prove that the lines IR and BC are perpendicular.

Solution. Note that MK ⊥ MJ . By simple angle chasing we get that

∠PJM = ∠AJM − ∠AJP = 90◦ + 1
2∠ABC − ∠ABC = 90◦ − 1

2∠ABC,

∠JPM = 90◦ − ∠PJM = 1
2∠ABC.

Let P ′ be the reflection of P over M . Note that ∠JPM = ∠JP ′M as JM ⊥ MP . Then

∠JP ′M = ∠JPM = 1
2∠ABC = ∠JBM,

hence JBP ′M is concyclic and as MK ⊥ MJ , point P ′ is the A-excenter of triangle ABM by
the incenter-excenter lemma. Let Q′ be the reflection of Q over M . Analogously, we get that
Q′ is the A-excenter of triangle AMC.

Let R′ be the intersection of lines BP ′ and CQ′. Note that R′ is the A-exceneter of trian-
gle ABC. Point R is the reflection of R′ over M as by reflecting lines BP ′, CQ′ over M we get
lines CP , BQ. It is well-known that distance of incenter and the distance of A-excenter from
the perpendicular bisector of BC is the same, thus by reflecting R′ over M we get a point (R)
that lies on the line through I perpendicular to BC.

A

B C

P
Q

I

J K

P ′
Q′

R

M
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Comment. Another way to finish the problem is by using BP ′ ∥ CP and CQ′ ∥ BQ to show
that I is the orthocenter of triangle RBC, as IB ⊥ BP ′ and IC ⊥ CQ′.

Solution 2. Let A′ and J ′ be the reflections of A and J in M , and let us denote ∠ABC by β.

First we show that A′, J ′ and P are collinear. Obviously, ∠JMP = 90◦, which implies that
∠PJJ ′ = ∠PJ ′J . Simple angle chasing shows that ∠MJA = 90◦ + β/2. Since ∠AJP = β,
we obtain ∠MJP = 90◦ − β/2, and by the reflection it follows that ∠MJ ′A′ = 90◦ + β/2 and
∠MJ ′P = 90◦ − β/2. This yields that A′, J ′, and P are collinear.

Now we observe that P is the intersection of two angle bisectors, thus P is the A′-excenter
of MA′C. It follows that BI and CP are two perpendicular angle bisectors. One can show
similarly that CI ⊥ BQ, hence I is the orthocenter of BCR, and the statement follows.

A

B C

P

I

J

M

A′

J ′

Solution 3. It is enough to show that I is the orthocenter of triangle RBC. By symmetry,
it suffices to prove that BI ⊥ RC. Denote the midpoints of sides AB, AC by B′ and C ′, re-
spectively. The famous Iran lemma tells us that the projection of C onto line BI lies on MC ′.
Thus, we need to prove that lines BI, MC ′, CP are concurrent. This is the same as saying that
triangles BCC ′, JPM are perspective, which - by Desargues’s theorem - is equivalent to the
points BC ∩ JP, CC ′ ∩ PM, C ′B ∩ MJ being collinear.
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Now let us define some new points. Let the circumcircle of AJB intersect lines AM, BM

for the second time at S and T , respectively. Since this circle is symmetric with respect to MJ ,
and so are the lines AM, BM , we have that ASBT is an isosceles trapezoid. Notice that the
angle condition of the problem tells us

∠AJT + ∠AJP = ∠ABT + ∠AJP = ∠ABT + ∠ABC = 180◦,

thus T, J, P are collinear. Now observe that ∠JMK = ∠JMA + ∠KMA = ∠BMA/2 +
∠CMA/2 = 180◦/2 = 90◦. Also, as MJ is the perpendicular bisector of AT and BS, we have
that lines MK, AT, BS are all perpendicular to MJ , so they are all parallel.

Let U be the midpoint of AT and V be the point at infinity of line MK. As we saw previously, U

lies on MJ and V lies on AT . Now, BC∩JP = BC∩UV, CC ′∩PM = CC ′∩V M, C ′B∩MJ =
C ′B ∩MU . We wish to show that these points are collinear, which now becomes same as saying
that triangles BCC ′, UV M are perspective. By Desargues’s theorem, it suffices to prove that
lines BU, CV, C ′M are concurrent.

Suppose that lines BU, C ′M intersect at X. Notice that U, B′, C ′ all lie on a midline of triangle
ABC and B′B ∥ C ′M . It follows that triangles BMX, UB′B are homothetic, so it is enough
to prove our goal for triangle UB′B. That is, we need to show that if U ′ is the reflection of U

in B′, then BU ′ is parallel to BS. However, this is fairly trivial, as B′ lies on the midline of
the isosceles trapezoid ASBT (since it is the midpoint of diagonal AB), so U ′ must lie on BS.
We are finally done.
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A

B C

P

I

J
K

R

M

U

S

T

V

C ′B′

X

Comment. We used the fact that S ̸= A and T ̸= B. If this wasn’t the case, then we would
have AM = BM = CM , which would lead to a 90◦ angle at C in triangle ABC, contradicting
the acuteness of the triangle.
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T-7
Define glueing of positive integers as writing their base ten representations one after another
and interpreting the result as the base ten representation of a single positive integer.

Find all positive integers k for which there exists an integer Nk with the following property:
for all n ≥ Nk, we can glue the numbers 1, 2, . . . , n in some order so that the result is a number
divisible by k.

Remark. The base ten representation of a positive integer never starts with zero.

Example. Glueing 15, 14, 7 in this order makes 15147.

Answer. k has this property if and only if 3 ∤ k.

Solution. If 3 | k, then for any n ∈ N of the form n = 3k + 1, the sum of the digits of all
positive integers up to n gives remainder 1 modulo 3. As a positive integer is divisible by 3 if
and only if the sum of its digits is divisible by 3, no matter how we glue 1, 2, . . . , n, the resulting
number is not divisible by 3, hence also not by k. So no appropriate Nk can be chosen.

If 3 ∤ k, write k = 2a5b ·m with gcd(m, 10) = 1. Let ℓ ≥ ⌊log10(m)⌋+2 be an integer divisible by
ϕ(m), so 10ℓ ≡ 1 (mod m) by Euler-Fermat. By the size constraint of ℓ, we can choose ai ∈ N
for 0 ≤ i < m such that ai ≡ i (mod m) and ai has ℓ digits. Note that all ai are different and
can also be chosen to be different from 10max(a,b). Take Nk ≥ max(10max(a,b), 10l). For n ≥ Nk

we glue 1, 2, . . . , n the following way:

(a) We put 10max(a,b) at the end of the glueing, so the glued number ends with max(a, b)
zeros, ensuring that the number is divisible by 2a5b.

(b) At the beginning of the number we put a0, then the number 1, then a1, a2, . . . , am−1 in
this order.

(c) We put the remaining numbers in the middle, in an arbitrary order.

Let G0 be the number given by this glueing, and for 1 ≤ i < m let Gi by the number we get
from the same glueing, except for swapping a0 and ai. We show that at least one of the integers
G0, G1, . . . , Gm−1 is divisible by m, and as all of them are divisible by 2a5b, one of them will be
divisible by k, finishing the proof.

Let d be the number of digits of G0 (and hence of G1, . . . , Gm−1 as well). Then

Gi −G0 = 10d−ℓ(ai −a0)+10d−ℓ−1−ℓ·i(a0 −ai) ≡ 10d−1 ·(ai −a0)·(10−1) ≡ i·9·10d−1 (mod m).

So if i is such that −G0 ≡ i · 9 · 10d−1 (mod m), then m | Gi. This choice of i is possible, as
m is coprime to both 9 and 10, so the inverse of 9 · 10d−1 exists modulo m. Therefore Gi is a
gluing of 1, 2, . . . , n, divisible by k.
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T-8
Let k be a positive integer and a1, a2, . . . be an infinite sequence of positive integers such that

aiai+1 | k − a2
i

for all integers i ≥ 1. Prove that there exists a positive integer M such that an = an+1 for all
integers n ≥ M .

Solution 1. Note that ai | k for all i ≥ 1. Furthermore, we have ai+1 | a2
i , so there are only

finitely many primes that divide any element of the sequence.

For a prime number p and a positive integer n, let νp(n) denote the exponent of p in the prime
factorization of n.

We’ll prove that νp(ai+1) ≤ νp(ai) for all primes p and all but finitely many i. From this, the
claim will follow as for each prime p, the sequence (νp(ai))i is eventually constant, and there
are finitely many primes p to consider.

Take a prime number p. Suppose that νp(ai+1) > νp(ai) for some positive integer i (if i with
this property don’t exist, we’re done). Since aiai+1 | k − a2

i , we must have νp(a2
i ) = νp(x), as

otherwise νp(a2
i − x) ≤ νp(a2

i ) < νp(aiai+1), a contradiction.

Then ai+1ai+2 | k − a2
i+1, and since νp(x) = νp(a2

i ) < νp(a2
i+1), we have νp(x − a2

i+1) = νp(x),
and νp(ai+1ai+2) ≤ νp(x), from where it follows that νp(ai+2) < νp(x)

2 .

Now ai+2ai+3 | k−a2
i+2 and from νp(ai+2) < νp(x)

2 we have that νp(x−a2
i+2) = νp(a2

i+2), therefore
νp(ai+3) ≤ νp(ai+2) < νp(x)

2 .

Repeating the same argument for i + 3, i + 4, . . . gives us

νp(ai+j) ≤ νp(ai+j−1) ≤ νp(x)
2

for j ≥ 3, and we’re done.

Solution 2. We can finish the proof slightly differently. We have already seen that there are
only finitely many primes dividing any element of the sequence. So it is enough to prove that
for any such prime p there is M such that νp(an) is constant for any n ≥ M . Take any such
prime p.

Suppose that there is i such that νp(aj) takes its minimum, that is νp(ai) ≤ νp(aj) for all j,
furthermore νp(ai+1) > νp(ai). (If there is no such i, then we have proved the required property
for p.)
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We know that aiai+1 | k − a2
i and ai+1ai+2 | k − a2

i+1. Then from the fact that νp(ai) is minimal
we know that νp(x − a2

i+1) ≥ νp(ai+1) + νp(ai). Therefore

νp(ai+1) + νp(ai) ≤ νp((x − a2
i+1) − (x − a2

i )) = νp(ai + ai+1) + νp(ai+1 − ai) = 2νp(ai).

But then we get that νp(ai+1) ≤ νp(ai), which is a contradiction.
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